

ASP.NET AJAX in Action

ASP.NET AJAX
in Action

ALESSANDRO GALLO
DAVID BARKOL

RAMA KRISHNA VAVILALA

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2008 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Tiffany Taylor
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-933988-14-2
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 13 12 11 10 09 08 07

 To those who wait
 —A.G.

 To my wife and best friend, Emily

 —D.B.

 To my parents, for making me who I am!
 —R.K.V.

brief contents
PART 1 ASP.NET AJAX BASICS ..1

1 ■ Introducing ASP.NET AJAX 3

2 ■ First steps with the Microsoft Ajax Library 36

3 ■ JavaScript for Ajax developers 73

4 ■ Exploring the Ajax server extensions 114

5 ■ Making asynchronous network calls 141

6 ■ Partial-page rendering with UpdatePanels 194

PART 2 ADVANCED TECHNIQUES ...229

7 ■ Under the hood of the UpdatePanel 231

8 ■ ASP.NET AJAX client components 264

9 ■ Building Ajax-enabled controls 299

10 ■ Developing with the Ajax Control Toolkit 332
vii

viii BRIEF CONTENTS
PART 3 ASP.NET AJAX FUTURES ...371

11 ■ XML Script 373

12 ■ Dragging and dropping 410

PART 4 MASTERING ASP.NET AJAX441

13 ■ Implementing common Ajax patterns 443

contents
forewords xvii
preface xxi
acknowledgments xxiii
about this book xxv
about the authors xxxi
about the title xxxii
about the cover illustration xxxiii

PART 1 ASP.NET AJAX BASICS 1

1 Introducing ASP.NET AJAX 3
1.1 What is Ajax? 4

Ajax components 5 ■ Asynchronous web programming 7
The XMLHttpRequest object 10 ■ Ajax development issues 14

1.2 ASP.NET AJAX architecture 15
Client framework 16 ■ Server framework 19 ■ Client-centric
development model 20 ■ Server-centric development model 21
ASP.NET AJAX goals 22

1.3 ASP.NET AJAX in action 23
Simple server-centric solution 23 ■ UpdateProgress control 28
Simple client-centric example 30

1.4 Summary 34
ix

x CONTENTS
2 First steps with the Microsoft Ajax Library 36
2.1 A quick overview of the library 37

Library features 37 ■ Ajax-enabling an ASP.NET
page 39 ■ Script versions 40

2.2 The Application model 42
Client components 43 ■ Client-page lifecycle 44 ■ “Hello
Microsoft Ajax!” 45

2.3 Working with the DOM 48
The abstraction API 48 ■ A dynamic, cross-browser text box 49
CSS and positioning 53 ■ Client delegates 54
$addHandlers and $clearHandlers 56 ■ Callbacks 57

2.4 Making development with JavaScript easier 58
The String object 58 ■ Sys.StringBuilder 59 ■ The Array
object 61 ■ Globalization 63 ■ Browser detection 65
Debugging 66 ■ Typed errors 69

2.5 Summary 72

3 JavaScript for Ajax developers 73
3.1 Working with objects 74

Objects 75 ■ Arrays 76 ■ Functions 77 ■ Creating custom
objects 81 ■ The prototype object 82 ■ Extending a JavaScript
type 83 ■ Literals 85

3.2 Working with JSON 86
JSON structures 86 ■ JSON and the Microsoft Ajax Library 88

3.3 Classes in JavaScript 89
Client classes 89 ■ The registerClass method 90
Properties 91 ■ Namespaces 93

3.4 Understanding inheritance 95
Prototype-based inheritance 95 ■ Passing arguments to the base
class 97 ■ Overrides 98

3.5 Understanding interfaces and enumerations 99
Interfaces 99 ■ Enumerations 101

3.6 Using type reflection 104
Reflection methods 104 ■ Object typing 105 ■ Building
a simple class browser 106

CONTENTS xi
3.7 Working with events 108
Exposing an event 109 ■ Subscribing to and
handling events 112

3.8 Summary 113

4 Exploring the Ajax server extensions 114
4.1 Ajax for ASP.NET developers 115

What are the Ajax server extensions? 115

4.2 Enhancing an existing ASP.NET site 116
A sample ASP.NET site 117 ■ Configuring an existing
ASP.NET site 118

4.3 ScriptManager: the brains of an Ajax page 120
Understanding the ScriptManager 121 ■ Deploying
JavaScript files 122 ■ Registering services 123
Localization 124 ■ Using the
ScriptManagerProxy 126

4.4 Partial-page updates 127
Introducing the UpdatePanel control 128 ■ More
UpdatePanels 131 ■ Insert feedback here 133 ■ Working
with a timer 135 ■ Error handling 138

4.5 Summary 140

5 Making asynchronous network calls 141
5.1 Working with ASP.NET Web Services 142

Configuring a web service 143 ■ Invoking web service
methods from JavaScript 146 ■ Managing complex
types 150 ■ Using HTTP GET 158
Page methods 159

5.2 The asynchronous communication layer 160
A simple WebRequest 161 ■ The executor 162
WebRequestManager 163 ■ Handling errors 163

5.3 Consuming external Web Services 166
The script technique 167 ■ Cross-domain calls through the
server 168 ■ Mash-it-up with ASP.NET AJAX 169
Bridges 175

xii CONTENTS
5.4 Using ASP.NET application services 183
Enabling ASP.NET application services 183 ■ Authentication
service 184 ■ Profile 187 ■ Roles: an Orcas preview 191
Message board application 192

5.5 Summary 193

6 Partial-page rendering with UpdatePanels 194
6.1 With great power comes great responsibility 195

Evolution of the UpdatePanel 195 ■ A simple example 196

6.2 Getting to know the UpdatePanel 201
Content for the UpdatePanel 201 ■ Update modes 203 ■ Render
modes 205 ■ ASP.NET page lifecycle 207

6.3 Triggers 208
Asynchronous triggers 208 ■ Postback triggers 210
Manual triggers 211

6.4 Advanced techniques 213
Repeating UpdatePanels 213 ■ Nesting UpdatePanels 216

6.5 Live GridView filter 216
Live GridView filter goals 217 ■ How does the GridView
filter work? 218 ■ Adding Ajax to the GridView filter 223
It’s alive! 224

6.6 Summary 227

PART 2 ADVANCED TECHNIQUES 229

7 Under the hood of the UpdatePanel 231
7.1 The PageRequestManager: the unsung hero 232

The client-side event model 233 ■ The anatomy of an
asynchronous postback 236

7.2 A client-side event viewer 243
Getting started 244 ■ Handling client-side events 245
Aborting a postback 250 ■ Managing postback priority 251
Notifying the user 252 ■ Locked and loaded 253 ■ Client-side
error handling 255

CONTENTS xiii
7.3 UpdatePanel cookbook 256
Why is the UpdatePanel slow? 256 ■ Inject JavaScript during a
partial postback 258 ■ Getting the validators to work 260
Sys.WebForms.PageRequestManagerParseErrorException 261

7.4 Caveats and limitations 262
Asynchronous requests are sequential 263 ■ Unsupported
ASP.NET 2.0 controls 263

7.5 Summary 263

8 ASP.NET AJAX client components 264
8.1 The client component model 265

Visual and nonvisual components 267 ■ Controls and
behaviors 268 ■ Component lifecycle 268 ■ Containers 269

8.2 Working with client components 270
Creating components 273 ■ Accessing components 276 ■ Events
and property change notification 276

8.3 Behaviors 279
Sys.UI.Behavior 280 ■ Creating behaviors 281 ■ Accessing
behaviors 281 ■ Enhancing a text box element 282

8.4 Controls 287
Sys.UI.Control 287 ■ Creating controls 288 ■ Accessing
controls 289 ■ Creating an element wrapper: text box 289
Creating a PhotoGallery control 292

8.5 Summary 298

9 Building Ajax-enabled controls 299
9.1 Script descriptors 300

Script descriptor hierarchy 300 ■ Describing a behavior 302
Describing a control 304 ■ Script references 306

9.2 Introduction to Ajax-enabled controls 306
How Ajax-enabled controls work 307 ■ Extenders and
script controls 308

9.3 Extenders 311
The IExtenderControl interface 311 ■ Extender registration 312
An extender for FormattingBehavior 313 ■ Using an extender 316

xiv CONTENTS
9.4 Script controls 319
The IScriptControl interface 319 ■ Script control
registration 320 ■ Design strategies 322 ■ Adding Ajax to the
ASP.NET Login control 322 ■ Using a script control 328

9.5 Summary 330

10 Developing with the Ajax Control Toolkit 332
10.1 A world of extenders 333

The auto-complete extender 334 ■ The ScriptPath property 340
The BehaviorID property 340

10.2 The Ajax Control Toolkit API 343
The Toolkit’s base classes 343 ■ A metadata-driven API 345
Building Toolkit extenders: the TextChanged extender 347
Support for Visual Studio Designer 355

10.3 Animations 357
Toolkit animation framework 357 ■ Animation basics 359
Using the AnimationExtender 360 ■ The UpdatePanelAnimation
extender 364 ■ JSON and animations: adding transitions to the
PhotoGallery control 365

10.4 Summary 369

PART 3 ASP.NET AJAX FUTURES 371

11 XML Script 373
11.1 XML Script basics 374

Hello XML Script! 375 ■ Controls and XML Script 378 ■ From
XML Script to JavaScript 382 ■ Type descriptors 383

11.2 Actions 386
SetPropertyAction 387 ■ PostBackAction 389
InvokeMethodAction 389 ■ Custom actions 394

11.3 Bindings 398
A simple binding 398 ■ Binding direction 400 ■ Target and data
path 401 ■ Bindings as components 402 ■ Transformers 404
Playing with transformers 405 ■ Custom transformers 408

11.4 Summary 409

CONTENTS xv
12 Dragging and dropping 410
12.1 The drag-and-drop engine 411

How the engine works 412 ■ A simple scenario for
drag and drop 415 ■ Creating a draggable item 416
The startDragDrop method 418 ■ The IDragSource
interface 419 ■ Creating a drop target 422 ■ The
IDropTarget interface 423 ■ Putting together
the pieces 426

12.2 A drag-and-drop shopping cart 427
Server-side design 429 ■ Client-side design 431 ■ The
ShoppingCart control 432 ■ The BooksCatalog control 435
Piecing it together 438

12.3 Summary 440

PART 4 MASTERING ASP.NET AJAX 441

13 Implementing common Ajax patterns 443
13.1 Script versioning 444

Getting informative stack traces 445 ■ XML
comments in JavaScript code 447 ■ Validating
function parameters 449 ■ Parameter validation
in production code 452 ■ Compressing and crunching
script files 454

13.2 Helpers, help me help you! 455
Automating the declaration of properties 456
Automating the creation of events 458

13.3 Logical navigation and unique URLs 461
Logical navigation 462 ■ Unique URLs 468

13.4 Declarative data binding 470
Setting up the Web Service 470 ■ The ListView
control 473

13.5 Declarative widgets 476
The drag-drop list 477 ■ Widgets and XML Script 479

13.6 Summary 484

xvi CONTENTS
appendix A Installing ASP.NET AJAX 487

appendix B Tools for debugging Ajax applications 499

resources 521

index 523

foreword
ASP.NET is used daily by millions of professional developers world-wide. It runs
some of the most successful websites and applications in the world, and every day
thousands of new developers begin learning ASP.NET for the first time—supported
by an incredible developer community of books, blogs, user groups, forums, and
developer websites.

 Our goal with ASP.NET AJAX is to enable developers to easily build great ASP.NET
applications that fully leverage the power of the browser, and which deliver a
smoother and more interactive experience for end users. ASP.NET AJAX works with
all modern browsers, and allows you to easily build great web applications that work
cross-platform on all operating systems. ASP.NET AJAX 1.0 is available as a free, fully
supported download for ASP.NET 2.0. It will be built into the standard .NET setup
package starting with the .NET Framework 3.5 release of ASP.NET.

 There are several things that I think distinguish ASP.NET AJAX. The first is the
productivity it delivers. ASP.NET AJAX can be used to very quickly add common
AJAX behavior and functionality to an application with very minimal code. If you
want smoother page updates and richer client-UI behaviors, there isn’t another
AJAX framework out there that makes it easier.

 What is great about ASP.NET AJAX is that it also scales to advanced scenarios. You
can use the ASP.NET AJAX client-side JavaScript library to build clean, encapsulated
JavaScript that makes asynchronous network callbacks to the server to build
extremely rich UI (for an example of this visit: http://www.pageflakes.com). This
ability to start simple, but then go deep, using a core AJAX programming model
xvii

http://www.pageflakes.com
http://www.pageflakes.com

xviii FOREWORD
that is nicely integrated into ASP.NET, ends up being extremely powerful, and is one
that enables developers to build great next-generation web applications.

 ASP.NET AJAX in Action provides an excellent guide to learning and mastering
all of the functionality that ASP.NET AJAX provides, and in particular it does a
great job of explaining its more advanced features. Alessandro, David, and Rama
are ASP.NET AJAX experts and share their experiences and insights throughout
the book. They will help teach you how to fully leverage ASP.NET AJAX and build
robust web applications faster and better than ever before.

 Enjoy!

SCOTT GUTHRIE

General Manager, Developer Division
Microsoft Corporation

foreword
Why is Ajax important? What makes a set of technologies that were invented a
decade ago suddenly relevant? Don’t we have easier ways to write rich applica-
tions? And aren’t some of those already cross-platform? Wasn’t the deployment
problem solved long ago, making web applications less and less relevant?

 Those are legitimate questions—yet all the planets seem to have aligned for
Ajax right now.

 First, the browser wars are finally over and even Internet Explorer is firmly
steered toward standards compliance. This means that it has become possible, at
last, to write truly cross-browser applications with a little help from Ajax toolkits,
effectively ironing-out any last differences.

 Second, JavaScript, long considered a toy language, has evolved (in its usage at
least). Most of the engineering techniques that are a given in other languages are
finally available for JavaScript, thanks in part to the flexibility of the language and
in part to advances in tooling and IDEs.

 Third, HTML and CSS as semantic and layout description languages are still
one of the most relevant options. No other rendering technology associates such a
low price of entry with the same developer friendliness and flexibility.

 Finally, the technology is not disruptive and this may be its most compelling
advantage. With Ajax, you can use what you already know about web technologies
and incrementally improve your applications.
xix

xx FOREWORD
 This is what ASP.NET AJAX is about: start with what you know and learn as you
go, improving your toolset along the way. Our intention was to make it as easy as
possible for you to start and then to take you as far as you’re ready to go.

 Alessandro, David, and Rama are among the best specialists in those technolo-
gies and they’re going to take you on an exciting ride. You’ll learn from the pio-
neers in this field what you need to know to write solid JavaScript, HTML, and CSS
and how to exploit ASP.NET AJAX to its full potential. The authors of this book
have more combined knowledge about and experience with Ajax than almost any-
one else in the industry—and they’re about to share that treasure with you.

BERTRAND LE ROY, PH.D.

Software Design Engineer, ASP.NET team
Microsoft Corporation

http://ASP.NET" \t "_blank
http://ASP.NET" \t "_blank
http://ASP.NET" \t "_blank

preface
Every book tells a story—even a book about web programming. This story begins
in the summer of 2005, at the Professional Developer Conference (PDC) in Los
Angeles. It was there that Microsoft gave us our first preview of Atlas, the original
codename for ASP.NET AJAX. Excited about its promise, we immediately jumped
at the opportunity to play around with the young and evolving framework. In the
beginning (and we still do this today), we flocked to the forums, blogs, and user
groups to learn, and in the process shape, the latest technology.

 When Manning approached us about collaborating on this book, it seemed
like a natural progression, considering all the time we had invested in learning
about the framework. Our goal was to provide the reader with the tools for
becoming a well-rounded ASP.NET AJAX developer. To us this meant becoming
proficient in JavaScript, authoring Ajax-enabled controls, and understanding how
to enrich ASP.NET applications through a collection of best practices and patterns.
Along the way, we wanted to display our enthusiasm for what makes ASP.NET AJAX
unique by sharing the lessons we had learned from the .NET community, our
everyday jobs, and from Microsoft.

 What makes ASP.NET AJAX in Action special (perhaps even irreplaceable) is its
approach to explaining in detail how to use and understand the framework.
Beginning with simple examples, we slowly progress to more complex, real-world
scenarios that challenge the reader to master the technology and raise his or her
skill level.
xxi

xxii PREFACE
 With the book now complete, our “story” has been told and we believe that
we’ve achieved our goal in delivering a unique and thorough guide to ASP.NET
AJAX. As you explore the book, it is our hope that you will become inspired to
build the rich and intuitive applications that users expect today.

acknowledgments
We’d like to thank everyone at Manning, especially our publisher, Marjan Bace; our
acquisitions editor, Mike Stephens; and our development editor, Nermina Miller,
for their continuous support and help with many aspects of the manuscript. Thanks
also to the others at Manning who worked with us in different stages of the project:
review editor Karen Tegtmayer, webmaster Gabriel Dobrescu, and not least of all
project editor Mary Piergies. Special thanks to copy editor Tiffany Taylor, proof-
reader Elizabeth Martin, design editor Dottie Marsico, and typesetter Gordan Sali-
novic. We’d like to also acknowledge the invaluable feedback and dedication of our
technical editor Joe Stagner, whose support and encouragement greatly contrib-
uted to the success of the book.

 A very special thank you to Scott Guthrie of Microsoft and Bertrand Le Roy of
Microsoft for writing the forewords to our book. Finally, we also thank the many
reviewers of the manuscript: Irena Kennedy, Walter Myers, Darren Neimke, Eric
Pascarello, Lucas Carlson, Radhakrishna M.V., Berndt Hamboeck, Kazi Manzur
Rashid, Mark Mrachek, Curt Christianson, Mohammad Azam, Al Harding, Omar
AL Zabir, Sonu Kapoor, Steve Marx, Dave Glover, and Abe Semaan.

ALESSANDRO GALLO

This is my first book, and I’ve put my time, passion, and soul into writing it. Now
that it’s done, I can say that writing a book is tough. This would have been impos-
sible to accomplish without the help of the people who contributed to its concep-
tion and development.
xxiii

xxiv ACKNOWLEDGMENTS
 Working with David and Rama has been an amazing experience. It was an
absolute pleasure working with you guys! I’m also grateful to those who dedicated
their time and energy to read and comment on the manuscript: David Anson,
Ronald Buckton, Sonu Kapoor, Bertrand Le Roy, Steve Marx, and Joe Stagner.

 A special thank-you to Luis Abreu for all the help and suggestions he provided
during the many hours spent discussing ASP.NET AJAX, since the first CTP release
of “Atlas.” Muito obrigado Luis!

 And I can never say thank you enough to Valentina for her patience, enthusi-
asm, and love.

DAVID BARKOL

Writing this book has been a rewarding and challenging experience. Although it
took more time that one could possibly justify, working with Alessandro and Rama
has been an absolute pleasure. I’m truly proud of what we’ve produced together
as a team and the friendship we’ve created in the process.

 I would like to thank everybody at Neudesic for their technical expertise and
support, especially Samir Patel, Jason Jung, Tim Marshall, Parsa Rohani, Anthony
Ferry, and Ashish Agarwal. An extended thank-you goes out to Mickey Williams,
Steve Saxon, and Phil Scott for influencing my career and providing me with
invaluable advice and encouragement.

 Thanks to our reviewers, who provided us with much-needed feedback and
support that greatly influenced our book. I would like to particularly thank Irena
Kennedy, Walter Myers, and Joe Stagner from Microsoft for their magnanimous
contributions and assistance during the review process.

 Most important, I would like to thank my wife Emily and two daughters
Miranda and Madeline, for inspiring me to do my best every day. The sacrifices
they made prove what a wonderful family I have and how lucky I am to have them.

RAMA KRISHNA VAVILALA

It has been an extreme pleasure to work with Alessandro and David. I consider
myself very fortunate and blessed for all the support and understanding I received
from them. Special thanks to our editor Michael Stephens for believing in all of us
and in this project.

 I would like to acknowledge the support my family has shown to me during the
writing of the book. Thank you, Radhika, for all the hard work and understand-
ing; and thanks, Shreya, for not troubling me too much while I was writing.

 My friend Nishant Sivakumar, who had just been through the book-writing
ordeal, was generous enough to share tips and tricks with me. Thanks, Nish!

 Last but not least, I also thank the people who participate in the online forums
www.asp.net and www.codeproject.com. I have learned a lot from them.

http://www.asp.net
http://www.asp.net
http://www.codeproject.com

about this book
Almost one year has elapsed since the release of the 1.0 version of ASP.NET AJAX.
With the buzz created by the Ajax paradigm, the framework has gained a strong
popularity among ASP.NET developers. The official ASP.NET AJAX website provides
video tutorials, online documentation, and discussion forums. With all these
resources available, one might think that a book would have little to contribute.

 Our opinion is different. It’s true that the online documentation acts as a
good, general reference. It’s also true that you can search the ASP.NET forums for
the latest tips and tricks.

 We believe that a strong comprehension of the new concepts and development
techniques that ASP.NET AJAX brings to ASP.NET is fundamental in order to
become proficient with the framework. What is the client page lifecycle? How
does a partial postback work? Why do you need to write an Ajax-enabled control?
One of the goals of this book is to explain how things work in ASP.NET AJAX. We
also wanted to provide as much code as possible to show how to implement com-
mon Ajax scenarios with the help of ASP.NET AJAX.

 Each chapter tries to explain the whys and hows of the concepts covered. We
believe that simple examples are the way to go, so the reader can quickly start cod-
ing without losing the focus on ASP.NET AJAX concepts. Once the main concepts
have been assimilated, we challenge the reader with more advanced examples.

 We believe that Ajax development is client-oriented. As a consequence, six
chapters of the book are entirely dedicated to the client-centric development
model. Two of these chapters cover features that will be embedded in the next
xxv

xxvi ABOUT THIS BOOK
versions of the framework, and are currently provided as CTP (Community Tech-
nical Preview) material. Both the client-centric and the server-centric develop-
ment models are discussed in great detail. As result, this book aims at giving you a
deep and comprehensive knowledge of the ASP.NET AJAX Extensions framework.

Who should read this book?

This book is targeted at ASP.NET developers who want to master the ASP.NET AJAX
Extensions. Even if we wrote this book with the beginner and intermediate devel-
opers in mind, the advanced developer could benefit from it, due to the new con-
cepts and programming techniques brought to the ASP.NET world by the ASP.NET
AJAX framework.

 A little knowledge of the Ajax paradigm and the JavaScript programming lan-
guage is desirable in order to fully understand the material presented in the book,
but we do provide a good amount of background material in order for you to
quickly become familiar with the concepts involved if you are a novice. We’d like
to stress the fact that this book is specific to the ASP.NET AJAX framework, which is
an implementation of many common Ajax patterns. Consequently, you won’t find
a general and comprehensive discussion about Ajax and its techniques and pat-
terns. If you’re new to the Ajax world, we strongly recommend reading an addi-
tional book about general Ajax concepts that is a framework-agnostic book. We
particularly enjoyed reading Ajax in Action, written by Dave Crane, Eric Pascarello,
and Darren James and published by Manning in October 2005.

Roadmap

This book is divided into four parts and is intended to guide you from the initial
stages of developing with ASP.NET AJAX all the way to becoming an expert.

 Part 1, which spans chapters 1–6, covers the basics of ASP.NET AJAX and its two
development models, the server-centric development model and the client-cen-
tric development model. In these chapters, you’ll roll up your sleeves and become
familiar with the essentials of Ajax programming and the ASP.NET AJAX infrastruc-
ture. You’ll learn about the components that make up the framework and how to
use it effectively to enhance web applications.

 Part 2 encompasses chapters 7–10 and goes deep into the development models
by covering advanced scenarios and techniques. Prior to this, we’ll lay the ground-
work for understanding the fundamentals of ASP.NET AJAX programming; but in
this part it’s time to apply those lessons against challenging, real-life situations.

 Part 3 is chapters 11 and 12. It highlights a set of features knows as the ASP.NET
Futures. Here, we examine what is on the horizon for ASP.NET AJAX.

ABOUT THIS BOOK xxvii
 Part 4 consists of chapter 13. This chapter will help you become an ASP.NET
AJAX master by implementing some of the most common Ajax patterns using the
skills acquired from the previous chapters.

 The approach we decided to follow in this book provides concepts and code
rather than a reference manual. For this reason, we strongly recommend that you
read all the chapters, because each chapter is built on the previous one and the
complexity increases gradually. If you intend to focus on a specific development
model, the following table suggests a possible division of the material covered in
the book.

Chapter 1 introduces Ajax and the ASP.NET AJAX extensions to the ASP.NET devel-
oper. Together with the foundations and the terminology, we present the server-
centric and client-centric development models. With the client-centric model, you
can develop Ajax applications by leveraging DHTML and JavaScript without rely-
ing on the ASP.NET server technology. With the server-centric model, you can take
advantage of ASP.NET capabilities to combine client functionality with ASP.NET
server controls.

 After we’ve established the foundations and provided a whirlwind tour of fea-
tures, chapters 2 and 3 cover the Microsoft Ajax Library, which is the client portion

Chapter Title
Client-centric

developer
Server-centric

developer
ASP.NET

AJAX master

1 Introducing ASP.NET AJAX X X X

2 First steps with the Microsoft Ajax Library X X

3 JavaScript for Ajax developers X X

4 Exploring the Ajax server extensions X X

5 Making asynchronous network calls X X X

6 Partial-page rendering with UpdatePanels X X

7 Under the hood of the UpdatePanel X X

8 ASP.NET AJAX client components X X

9 Building Ajax-enabled controls X X

10 Developing with the Ajax Control Toolkit X X

11 XML Script X X

12 Dragging and dropping X X

13 Implementing common Ajax patterns X X X

xxviii ABOUT THIS BOOK
of the ASP.NET AJAX framework. In chapter 2, we’ll explain some basic concepts
such as the application model and the client page lifecycle, as well as provide an
overview of all the features provided by the library. In chapter 3, we’ll focus specif-
ically on object-oriented programming with JavaScript and the Microsoft Ajax
Library. After reviewing the basics of the JavaScript language and JSON, we’ll go
deep into the object-oriented constructs provided by the Microsoft Ajax Library.

 Chapter 4 tackles a common scenario that many ASP.NET developers will encoun-
ter: upgrading an existing ASP.NET application to ASP.NET AJAX. In this chapter,
you’ll learn how a new collection of server controls called the Ajax server extensions
can help you gracefully and easily enhance an existing application.

 After some reinforcement about the server-centric model in the previous chap-
ter, chapter 5 delves into a key pillar of Ajax development: the ability to make asyn-
chronous network requests from the browser to the server. In this thorough chapter,
we cover in detail topics such as working with ASP.NET Web Services, ASP.NET appli-
cation services such as authentication and profile, and the bridge technology.

 The next few chapters focus primarily on the UpdatePanel control and the
partial-page rendering mechanism. Beginning with chapter 6, we explain how to
use the UpdatePanel correctly and efficiently. Chapter 7 unveils how the partial-
page rending mechanism works under the hood and provides insight into how
you can take more control of the application during the process.

 In chapter 8, we’ll return to the Microsoft Ajax Library to examine the client
component model. With this model, which is similar to the one used in the .NET
framework on the server side, you can create components using JavaScript. Com-
ponents let you easily encapsulate and reuse portions of client-side code, and they
simplify the development of Ajax-enabled server controls.

 We cover Ajax-enabled controls in chapter 9, which explains how to combine
client components with ASP.NET server controls in order to enrich them with cli-
ent functionality. In this chapter, you’ll learn how to build extenders and script
controls, the two new categories of server controls introduced by ASP.NET AJAX.

 Chapter 10 is dedicated to the Ajax Control Toolkit, which is the biggest collec-
tion of Ajax-enabled controls available at present. The Toolkit is an open-source
project owned by Microsoft and open to contributions from the community. In
the chapter, we’ll discuss some of the Ajax-enabled controls shipped with the Ajax
Control Toolkit. We’ll also introduce the Toolkit API for developing Ajax-enabled
controls, as well as the Animation framework for easily creating animations and
visual effects.

 Chapters 11 and 12 explore the future of ASP.NET AJAX. We’ll cover in detail
some of the features that will be included in the next versions of ASP.NET AJAX.
These features are, at present, shipped as evaluation code in a separate package

ABOUT THIS BOOK xxix
called ASP.NET Futures. In chapter 11, we’ll cover XML Script, which is a declarative
language, similar to the ASP.NET markup code, used for instantiating client com-
ponents in a web page. You can use it to execute complex client-side code without
writing a single line of JavaScript. Chapter 12 is dedicated to the drag-and-drop
engine, which makes it possible to drag and drop DOM elements in a web page. In
this chapter, you’ll build a drag-and-drop–enabled shopping cart from scratch by
leveraging both the client-centric and the server-centric development models.

 Finally, chapter 13 shows you how to implement some of the most common
and useful Ajax patterns using the ASP.NET AJAX framework. In addition to imple-
menting classic patterns such as drag-and-drop widgets and logical navigation,
we’ve decided to give space to coding patterns as well. Chapter 13 covers
advanced scenarios such as writing debug versions of script files and extending
the Microsoft Ajax Library to become even more productive with JavaScript.

 Appendixes A and B are dedicated to the setup of the tools needed to install
and use ASP.NET AJAX. Appendix A covers the installation of both the ASP.NET
AJAX framework and the Ajax Control Toolkit. It also shows you how to install the
Visual Studio templates and how to add server controls to the Visual Studio Tool-
box. A section is dedicated to the installation of the AdventureWorks database,
which is used in some of the examples presented in the book.

 Appendix B covers some of the tools that are a must-have for an Ajax devel-
oper. It explains how to install and use Firebug to debug web applications in the
Firefox browser. You’ll also learn how to install and use Web Development Helper
and Fiddler to access the browser’s console and debug HTTP traffic. The final sec-
tion shows you how to configure Visual Studio 2005 for the purpose of debugging
the JavaScript code.

Typographical conventions

The following typographical conventions appear throughout the book:

■ Technical terms are introduced in italics.
■ Code examples and fragments appear in a fixed-width font.
■ Namespaces and types, as well as members of these types, also appear in a

fixed-width font.
■ Many sections of code have numbered annotations that appear in the right

margin. These numbered annotations are discussed more fully following
the code.

In the book, we use special paragraphs to highlight topics for further exploration
of ASP.NET AJAX and the .NET Framework. Here’s an example:

xxx ABOUT THIS BOOK
NOTE These paragraphs provide additional details about the .NET Framework
or sources of additional information accessible from the Internet. The
URL addresses shown in these paragraphs were valid as of August 1, 2007.

Source code downloads

All source code for the programs presented in ASP.NET AJAX in Action is available to
purchasers of the book from the Manning website. Visit the site at www.manning.
com/gallo or www.manning.com/ASPNETAJAXinAction for instructions on down-
loading the code.

Author Online

Free access to a private Internet forum, Author Online, is included with the pur-
chase of this book. Visit the website for detailed rules about the forum, to sub-
scribe to and access the forum, to retrieve the code for each chapter and section,
and to view updates and corrections to the material in the book. You are invited to
make comments, good or bad, about the book, ask technical questions, and
receive help from the authors and other ASP.NET AJAX programmers. The forum
is available at the book’s website at www.manning.com/gallo or www.manning.
com/ASPNETAJAXinAction.

 Manning’s commitment to readers is to provide a venue where a meaningful
dialogue among individual readers and among readers and the authors can take
place. It isn’t a commitment to any specific amount of participation on the part of
the authors, whose contribution remains voluntary (and unpaid). So please keep
the questions and comments interesting!

 Alessandro can be contacted directly at modulino@gmail.com or through his
blog at aspadvice.com/blogs/garbin.

 David can be contacted directly at david.barkol@neudesic.com or through his
blog at weblogs.asp.net/davidbarkol.

 Rama can be contacted directly at rama.vavilala@gmail.com.

http://www.manning.com/ASP.NETAJAXinAction
http://www.manning.com/ASP.NETAJAXinAction
http://www.manning.com/ASP.NETAJAXinAction
http://www.manning.com/gallo
http://www.manning.com/gallo
http://www.manning.com/gallo

about the authors
ALESSANDRO GALLO is a Microsoft MVP in the Visual ASP/ASP.NET category and a
.NET developer/consultant with a primary focus on ASP.NET application design
and development. He is a contributor for the Ajax Control Toolkit project, owned
by Microsoft. Alessandro has been developing with ASP.NET AJAX since the first
CTP. He won the Grand Prize at the Mash-it-up with ASP.NET AJAX contest held by
Microsoft in 2006. Alessandro lives in Sassari, a small city on the beautiful Italian
island of Sardinia.

DAVID BARKOL is a Principal Consultant for Neudesic, one of Microsoft’s leading
.NET professional service firms and a Gold Certified Partner. At Neudesic, David
specializes in providing custom .NET solutions that leverage the Microsoft tech-
nology platform. A frequent speaker at code camps and .NET user groups in
Southern California, David is also an MCSD in .NET and avid urban hang-glider.
David resides in tropical La Palma, California, with his wife Emily and two daugh-
ters Miranda and Madeline.

RAMA KRISHNA VAVILALA is Chief Technical Architect at 3C Software. He is the
brain behind Impact:ECS™, the leading enterprise cost-management solution for
manufacturers in vertical markets ranging from textiles to semiconductors to food
processors. He has over a decade of wide-ranging experience from developing
desktop applications using MFC, Windows Forms, and WPF, to developing
Microsoft Office Solutions, to developing Ajax-powered web applications. He lives
in Atlanta with his wife Radhika and his daughter Shreya.
xxxi

about the title
By combining introductions, overviews, and how-to examples, the In Action books
are designed to help learning and remembering. According to research in cogni-
tive science, the things people remember are things they discover during self-
motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, retelling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively explor-
ing them. Humans learn in action. An essential part of an In Action guide is that it
is example-driven. It encourages the reader to try things out, to play with new
code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or to solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just when
they want it. They need books that aid them in action. The books in this series are
designed for such readers.
xxxii

about the cover illustration
The figure on the cover of ASP.NET AJAX in Action is “Le Béarnais,” or an inhabit-
ant of the region of Béarn in Southwestern France. The region is known for its
contrasts, encompassing both valleys and mountains, that extend to the Pyrenean
frontier with Spain.

 The illustration is taken from a French travel book, Encyclopedie des Voyages by J.
G. St. Saveur, published in 1796. Travel for pleasure was a relatively new phenom-
enon at the time and travel guides such as this one were popular, introducing
both the tourist as well as the armchair traveler to the inhabitants of other regions
of France and abroad.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years
ago. This was a time when the dress codes of two regions separated by a few dozen
miles identified people uniquely as belonging to one or the other. The travel
guide brings to life a sense of isolation and distance of that period and of every
other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.
xxxiii

xxxiv ABOUT THE COVER ILLUSTRATION
 We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life two
centuries ago brought back to life by the pictures from this travel guide.

Part 1

ASP.NET AJAX basics

The first part of the book sets the foundations of ASP.NET AJAX. Chap-
ter 1 introduces the main Ajax concepts and terminology. In this chapter,
we’ll also take a whirlwind tour of the features in ASP.NET AJAX that will be
covered throughout the book.

 The subsequent chapters discuss the primary development models used
in ASP.NET AJAX programming. We present the client-centric programming
model in chapters 2 and 3. Reading these chapters will provide you with the
skills you need to write object-oriented JavaScript code using the Microsoft
Ajax Library.

 Chapter 4 takes a break from the client-script to introduce the Ajax server
extensions-a server-centric solution for ASP.NET developers. In this chapter,
you'll enhance an existing ASP.NET application with the controls and features
of the ASP.NET AJAX framework. This pattern is continued in chapter 6, where
we offer a thorough explanation of how to use the ScriptManager control for
partial-page rendering. In between, chapter 5 focuses on one of the funda-
mental pillars of Ajax: making asynchronous calls. This chapter unveils how
asynchronous calls to the server are invoked from the browser.

Introducing
ASP.NET AJAX
In this chapter:
■ An overview of Ajax programming
■ The ASP.NET AJAX architecture
■ The client-centric development model
■ The server-centric development model
■ A tour of ASP.NET AJAX
3

4 CHAPTER 1

Introducing ASP.NET AJAX
Ajax has revolutionized the way users interact with web pages. Gone are the days
of frustrating page refreshes, losing your scroll position on a page, and working in
the redraw-refresh paradigm of traditional web applications. In its place is the
next generation of web applications: Ajax applications, whose characteristics
include smoother page updates; continuous, fluid interaction; and visually
appealing, rich interfaces.

 The term Ajax, which stands for Asynchronous JavaScript and XML, was coined
to describe this new approach to web development. Although most users aren’t
familiar with the acronym, they’re certainly familiar with its benefits. Sites like
Google Maps, Live.com, and Flickr are just a few examples of recent applications
that are leading the way through this new frontier. Each of them offers slightly dif-
ferent services, but all share the same goal: to provide a rich user experience that
is personalized, engaging, and supported across all major browsers.

 Unfortunately, using these next-generation web applications is far more trivial
than authoring them. Ajax applications require a different approach to thinking
about web solutions. This paradigm shift requires more discipline and knowledge
of client-side scripting along with the conscious decision to deliver a smarter and
more intuitive application to the browser. In addition, although it’s been around
for a while, Ajax is still relatively new to web developers, and techniques for pat-
terns, guidelines, and best practices are still being discovered and refined. To
assist in this transition, the Microsoft ASP.NET AJAX framework encapsulates a rich
set of controls, scripts, and resources that empowers you to more easily craft the
next generation of web applications.

 The goal in this introductory chapter is to get you started on developing appli-
cations with the ASP.NET AJAX framework. To whet your appetite, we’ll go through
a whirlwind tour of the most basic and commonly used components and follow up
with a few quick examples that demonstrate their use. Subsequent chapters exam-
ine each of these components in more detail and reveal how things work under
the hood. But before you can discover the ASP.NET AJAX framework, you must
first understand what Ajax is and how we got here.

1.1 What is Ajax?

Ajax is an approach or pattern to web development that uses client-side scripting
to exchange data with a web server. This approach enables pages to be updated
dynamically without causing a full page refresh to occur (the dream, we presume,
of every web developer). As a result, the interaction between the user and the
application is uninterrupted and remains continuous and fluid. Some consider
this approach to be a technology rather than a pattern. Instead, it’s a combination
of related technologies used together in a creative way.

What is Ajax? 5
 The result of bringing these technologies together is nothing new. Tech-
niques for asynchronous loading of content on the Web can be dated as far back
as Internet Explorer 3 (also known as the Jurassic years of web development)
with the introduction of the IFRAME element. Shortly after, the release of Inter-
net Explorer 5 introduced the XMLHttpRequest ActiveX object, which made pos-
sible the exchange of data between the client and server through web browser
scripting languages.

NOTE Some credit remote scripting as the precursor to Ajax development. Prior
to the XMLHttpRequest object, remote scripting allowed scripts running
in a browser to exchange information with a server. For more about
remote scripting, read http://en.wikipedia.org/wiki/Remote_Scripting.

Even with the release of the XMLHttpRequest object, and with applications like
Outlook Web Access taking advantage of these techniques, it wasn’t until the
release of Google Maps that Ajax was noticed by the masses.

 You now have a high-level understanding of Ajax and how it came to be, but we
haven’t discussed the technologies that make up the pattern or how the ASP.NET
AJAX framework fits into the picture. It’s important that we spend a little more
time fully explaining how Ajax works and discussing the technologies that form it.

1.1.1 Ajax components

As we previously mentioned, the Ajax programming pattern consists of a set of
existing technologies brought together in an imaginative way, resulting in a richer
and more engaging user experience. The following are the main pillars of the
Ajax programming pattern and the role they play in its model:

■ JavaScript—A scripting language that is commonly hosted in a browser to
add interactivity to HTML pages. Loosely based on the C programming lan-
guage, JavaScript is the most popular scripting language on the Web and is
supported by all major browsers. Ajax applications are built in JavaScript.

■ Document Object Model (DOM) —Defines the structure of a web page as a set of
programmable objects that can be accessed through JavaScript. In Ajax pro-
gramming, the DOM is leveraged to effectively redraw portions of the page.

■ Cascading Style Sheets (CSS)—Provides a way to define the visual appearance
of elements on a web page. CSS is used in Ajax applications to modify the
exterior of the user interface interactively.

■ XMLHttpRequest—Allows a client-side script to perform an HTTP request.
Ajax applications use the XMLHttpRequest object to perform asynchro-
nous requests to the server as opposed to performing a full-page refresh
or postback.

6 CHAPTER 1

Introducing ASP.NET AJAX
NOTE The name of the XMLHttpRequest object is somewhat misleading because
data can be transferred in the form of XML or other text-based formats.
The ASP.NET AJAX framework relies heavily on a format called JavaScript
Object Notation (JSON) to deliver data to and from the server. Examples
of JSON and how the ASP.NET AJAX framework uses it are scattered
throughout this book. You can find a more thorough explanation of JSON
in chapter 3.

Listing the technologies is easy; but understanding how they work together, com-
plement each other, and deliver a better user experience is the objective. Figure 1.1
illustrates how these technologies interact with one another from the browser.

 In an Ajax-enabled application, you can think of JavaScript as the glue that
holds everything together. When data is needed, the XMLHttpRequest object is
used to make a request to the server. When the data is returned, the DOM and CSS
are leveraged to update the browser’s user interface dynamically.

TIP You can find a collection of Ajax design patterns at
http://ajaxpatterns.org.

To see this in action, visit the maps page on the Windows Live site at http://
local.live.com (see figure 1.2). Notice the interactive map and how clicking and
dragging the map updates the contents on the page without causing a full page
refresh to occur. The tiles for the map are retrieved in the background via the

Web Browser

JavaScript

Web Server

CSS

Document Object Model

XMLHttpRequest

Figure 1.1 Ajax components. The technologies used in the Ajax pattern complement
each to deliver a richer and smarter application that runs on the browser.

http://local.live.com
http://local.live.com
http://local.live.com

What is Ajax? 7
XMLHttpRequest object; the user is granted continuous interaction with the appli-
cation in the process. Take some time to discover what the site has to offer, and
note how fluid and responsive the page actions appear. Using the ASP.NET AJAX
framework, these are the types of intuitive and interactive applications that you’ll
build throughout this book.

 The maps on Live.com rely heavily on retrieving data asynchronously so users
can continue to interact with the applications. This key pattern is perhaps the
most important thing to understand about Ajax.

1.1.2 Asynchronous web programming

The A in Ajax stands for asynchronous; this is a key behavior in the Ajax program-
ming pattern. Asynchronous means not synchronized or not occurring at the same

Figure 1.2 The Windows Live site is an excellent example of what can be accomplished with
the ASP.NET AJAX framework.

8 CHAPTER 1

Introducing ASP.NET AJAX
time. To better understand this, let’s take a real-life example. If you go to Star-
bucks and walk up to the counter, you present the cashier with your order (a tall,
iced café mocha for David, in case you were wondering). The cashier marks an
empty cup with details of the order and places it into a queue. The queue, in this
instance, is literally a stack of other empty cups that represent pending orders
waiting to be fulfilled. This process decouples the cashier from the individuals
(baristas, if you want to get fancy) who prepare the drinks. With this approach, the
cashier can continue to interact with the customers while orders are being pro-
cessed at a different time—asynchronously. In the end, Starbucks maximizes its
output and significantly improves the customer experience.

 Now, let’s examine what things would be like with a more traditional
approach—in a synchronous process. If only one person were working in the
shop that day, they would have to take on the chores and responsibilities of both
the cashier and barista. A customer would place an order, and the next customer
would be forced to wait for the previous order to be completed before they could
place their own. This less efficient process is how traditional web applications
work: They take away the continuous interaction and force users to wait for a par-
ticular action to be completed. Figure 1.3 demonstrates the flow of a traditional
web application in a synchronous manner.

 Normally, a user action such as clicking a button on a form invokes an HTTP
request back to the web server. The server then processes the request, possibly
doing some calculations or performing a few database operations; and then
returns back to the client a whole new page to render. Technically, this makes a lot
of sense—web pages are stateless by nature, and because all the logic about the
application typically resides on the server, the browser is just used to display the
interface. The server goes through the entire page lifecycle again and returns to

Browser

Process request

User action (waiting...) User action

H
TTP R

equest H
TM

L
+

C
SS

H
TTP R

equest H
TM

L
+

C
SS

Process request

(waiting...) User action

Server

Figure 1.3 Traditional web applications behave in a synchronous manner and take away all
interaction from the user during HTTP requests.

What is Ajax? 9
the browser the HTML, CSS, and any other resources it needs to refresh the page.
Unfortunately, this doesn’t present the user with a desirable experience. Instead,
they’re exposed to a stop-start-stop pattern where they temporarily (and unwill-
ingly) lose interaction with the page and are left waiting for it to be updated.

NOTE In ASP.NET, when a form posts data back to itself (or even to another
page), it’s called a postback. During this process, the current state of the
page and its controls are sent to the server for processing. The postback
mechanism is relied on to preserve the state of the page and its server
controls. This process causes the page to refresh and is costly because of
the amount of data sent back and forth to the server and the loss of inter-
action for the user.

An Ajax-enabled application works differently, mainly by eliminating the intermit-
tent nature of interaction with the introduction of an Ajax agent placed between
the client and server. This agent communicates with the server asynchronously, on
behalf of the client, to make the HTTP request to the server and return the data
needed to update the contents of the page. Figure 1.4 demonstrates this asynchro-
nous model.

Browser

Process request

User action

JavaScript call H
TM

L,
 C

SS
, d

at
a

H
TTP R

equest

D
at

a

Process request
Server

Ajax engine

JavaScript call H
TM

L,
 C

SS
, d

at
a

H
TTP R

equest

D
at

a

Figure 1.4 The asynchronous web application model leverages an Ajax engine to make an HTTP
request to the server.

10 CHAPTER 1

Introducing ASP.NET AJAX
Notice that in the asynchronous model, a call originating from JavaScript is made
to the Ajax engine instead of the server to retrieve and receive data. At the core of
the Ajax engine is the XMLHttpRequest object, which we’ll look at next to solidify
your understanding of how Ajax works.

1.1.3 The XMLHttpRequest object

The XMLHttpRequest object is at the heart of Ajax programming because it
enables JavaScript to make requests to the server and process the responses. It was
delivered in the form of an ActiveX object when released in Internet Explorer 5,
and it’s supported in most current browsers. Other browsers (such as Safari,
Opera, Firefox, and Mozilla) deliver the same functionality in the form of a native
JavaScript object. Ironically, Internet Explorer 7 now implements the object in
native JavaScript as well, although differences between browsers remain. The fact
that there are different implementations of the object based on browsers and
their versions requires you to write browser-sensitive code when instantiating it
from script. Listing 1.1 uses a technique called object detection to determine which
XMLHttpRequest object is available.

var xmlHttp = null;

if (window.XMLHttpRequest) { // IE7, Mozilla, Safari, Opera, etc.
 xmlHttp = new XMLHttpRequest();
} else if (window.ActiveXObject) {
 try{
 xmlHttp = new ActiveXObject("Microsoft.XMLHTTP"); //IE 5.x, 6
 }
 catch(e) {}
}

Now that the object has been instantiated, you can use it to make an asynchronous
request to a server resource. To keeps things simple, you can make a request to
another page called Welcome.htm, the contents of which are shown in listing 1.2.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>Welcome</title>
</head>

Listing 1.1 Instantiating the XMLHttpRequest object

Listing 1.2 Welcome.htm

What is Ajax? 11
<body>
 <div>Welcome to ASP.NET AJAX In Action!</div>
</body>
</html>

Welcome.htm is pretty minimal and contains some static text welcoming you to
the book. You make the asynchronous request with a few more lines of code that
you wrap in a function called sendRequest (see listing 1.3).

function sendRequest(url) {
 if (xmlHttp) {

 xmlHttp.open("GET", url, true); // true = async

 xmlHttp.onreadystatechange = onCallback;

 xmlHttp.setRequestHeader('Content-type',
 'application/x-www-form-urlencoded');

 xmlHttp.send(null);
 }
}

The sendRequest method takes as a parameter the URL to which you’ll be making
an HTTP request. Next, it B opens a connection with the asynchronous flag set to
true. After the connection is initialized, it C assigns the onreadystatechange prop-
erty of the XMLHttpRequest object to a local function called onCallback. Remem-
ber, this will be an asynchronous call, which means you don’t know when it will
return. A callback function is given so you can be notified when the request is com-
plete or its status has been updated. After specifying the content type in the request
header, you call the D send method to transmit the HTTP request to the server.

Listing 1.3 Sending an asynchronous request

Open
asynchronous
connection

B

Assign callback
functionC

Send asynchronous
requestD

Starbucks part 2
If you go back to the earlier Starbucks example, the open command is similar to
placing the order, and the send command is like the order being placed in the
queue. The callback function is the unique name associated with your order—
typically your name. Another interesting tidbit is that in IE, only two connections
can be opened at a time, which is the equivalent of having two cashiers available
to take the orders.

12 CHAPTER 1

Introducing ASP.NET AJAX
When the status of the request changes and the callback function is invoked, the
final step is to check the status and update the user interface with the contents
returned from Welcome.htm (see listing 1.4).

function onCallback() {

 if (xmlHttp.readyState == 4) {

 if (xmlHttp.status == 200){
 var r = document.getElementById('results');
 r.innerHTML = xmlHttp.responseText;
 }
 else {
 alert('Error: ' + xmlHttp.status);
 }

 }
}

The status of the request is returned in the readyState B property of the XMLHt-
tpRequest object. The value 4 indicates that the request has completed. Next, the
response from the server C must be checked to confirm that everything was suc-
cessful. Status code 200 is designated in the HTTP protocol to indicate that a
request has succeeded. Finally, the innerHTML of a span element is updated to
reflect the contents in the response D. Listing 1.5 shows the complete code for
this example.

<%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="XmlHttpRequest.aspx.cs"
 Inherits="CH_01_XmlHttpRequest" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>ASP.NET AJAX In Action - XMLHttpRequest</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 Loading...

Listing 1.4 The callback function gets called every time the ready state changes for the
 asynchronous request.

Listing 1.5 Using the XMLHttpRequest control to asynchronously retrieve data

Look for completed
ready state

B

Status 200 =
successful request

C

Display request
resultsD

What is Ajax? 13
 </div>
 </form>

<script type="text/javascript">

var xmlHttp = null;

window.onload = function() {

 loadXmlHttp();
 sendRequest("Welcome.htm");
}

function loadXmlHttp() {

 if (window.XMLHttpRequest) { // IE7, Mozilla, Safari, Opera
 xmlHttp = new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 try{
 xmlHttp = new ActiveXObject("Microsoft.XMLHTTP"); //IE 5.x, 6
 }
 catch(e) {}
 }
}

function sendRequest(url) {
 if (xmlHttp) {

 xmlHttp.open("GET", url, true); // true = async

 xmlHttp.onreadystatechange = onCallback;

 xmlHttp.setRequestHeader('Content-type',
 'application/x-www-form-urlencoded');

 xmlHttp.send(null);
 }
}

function onCallback() {

 if (xmlHttp.readyState == 4) {

 if (xmlHttp.status == 200){
 var r = document.getElementById('results');
 r.innerHTML = xmlHttp.responseText;
 }
 else {
 alert('Error: ' + xmlHttp.status);
 }

14 CHAPTER 1

Introducing ASP.NET AJAX
 }
}

</script>
</body>
</html>

Figure 1.5 shows the output that results when you execute the example code.
 The example we just walked through demonstrates how to leverage the

XMLHttpRequest object to make a simple asynchronous HTTP request to another
page on the server. When the request is completed, you display the results on the
page by dynamically updating the contents of one of its UI elements—a span.
There is a lot more to the XMLHttpRequest object that we didn’t cover; we barely
scratched the surface. The point of this exercise was to introduce you to the basics
of the Ajax programming pattern. You should recognize some of the issues that
arise with Ajax development, such as cross-browser compatibility and the need for
a lot of plumbing code to execute requests to the server. This takes us into the next
section, which discusses other issues and complexities in Ajax development.

1.1.4 Ajax development issues

Without a toolkit or framework to leverage, developing Ajax-enabled applications
is no trivial task. Several development issues arise, the most obvious of which is
browser compatibility. Aside from the different implementations of the XMLHttp-
Request object, each browser also implements a slightly different version of the

Figure 1.5 A simple asynchronous request to another page

ASP.NET AJAX architecture 15
DOM. Keeping up with changes between browsers and managing browser detection
can be a tedious and error-prone process. One of the goals of a toolkit or frame-
work is to abstract away the complexities and discrepancies between browsers so
you can use a simple and consistent set of APIs to perform the same operations.

 Another challenge is the requirement for a strong grasp of the JavaScript lan-
guage. JavaScript isn’t inherently a complex language; however, many ASP.NET
developers lack expertise in it. In addition, JavaScript doesn’t offer the object-
oriented, type-safe features that .NET developers have grown accustomed to with
C#, VB.NET, and other .NET languages. Concepts such as inheritance, interfaces,
and events can be simulated in JavaScript but are left to you to implement. With-
out a framework, this portion of JavaScript remains for you to master in order to
make any progress. Debugging and the lack of support for client-scripting lan-
guages in integrated development environments (IDEs) adds to the complexity
and challenges.

 By now, you probably see the direction we’re headed: In almost every case, it’s
wiser to leverage a framework or toolkit when developing Ajax-enabled applica-
tions rather than deal with these complexities on your own. We’re certain there
are simple situations where coding something quickly with the XMLHttpRequest
object can get the job done, but this book’s aspirations are much greater. With
that said, it’s time to look at ASP.NET AJAX and what it has to offer as a framework
and library.

1.2 ASP.NET AJAX architecture

The ASP.NET AJAX framework enables developers to create rich, interactive,
highly personalized web applications that are cross-browser compliant. At first
glance, you may think this sounds like another way of saying that the framework is
an Ajax library. The truth is, it’s primarily an Ajax library, but it offers many other
features that can increase the productivity and quality of your web applications.
This will make more sense once we examine the architecture, shown in figure 1.6.

 The first thing you may notice about the architecture of the ASP.NET AJAX
framework is that it spans both the client and server. In addition to a set of client-
side libraries and components, there is also a great deal of support on the server
side, with ASP.NET server controls and services.

 We’ll explore both sides of the framework heavily throughout the book, begin-
ning with the client framework.

16 CHAPTER 1

Introducing ASP.NET AJAX
1.2.1 Client framework

One of the nice things about the client framework is that the core library isn’t reli-
ant on the server components. The core library can be used to develop applica-
tions built in Cold Fusion, PHP, and other languages and platforms. With this
flexibility, the architecture can be divided logically into two pieces: the client
framework and the server framework. Understanding how things work in the cli-
ent framework is essential even for server-side developers, because this portion
brings web pages to life. At the core is the Microsoft Ajax Library.

Microsoft Ajax Library
As we stated previously, the heart of the client framework is the Microsoft Ajax
Library, also known as the core library. The library consists of a set of JavaScript files
that can be used independently from the server features. We’ll ease into the core
library by explaining the intentions of each of its pieces or layers, beginning with
its foundation: the type system.

NOTE In previous versions of ASP.NET AJAX, when it had the codename Atlas,
the core library was referred to as the Client Script Library.

Microsoft Ajax Library

Components

Services

Network Stack

DOM

Localization

JSON

Type System

Application

HTML, JavaScript
XML Script

ASP.NET AJAX
Web Service Proxies

ASP.NET 2.0 Ajax Server Extensions

ASP.NET AJAX
Server Controls

App Services
Bridge

Web Services
Bridge

Ajax-enabled
ASP.NET Pages

Web Services

ASP.NET 2.0

Page Framework,
Server Controls

Application
Services

ASP.NET AJAX Server FrameworkASP.NET AJAX Client Framework

Figure 1.6 The ASP.NET AJAX architecture spans both the client and server.

ASP.NET AJAX architecture 17
The goal of the type system is to introduce familiar object-oriented programming
concepts to JavaScript—like classes, inheritance, interfaces, and event-handling.
This layer also extends existing JavaScript types. For example, the String and
Array types in JavaScript are both extended to provide added functionality and a
familiarity to ASP.NET developers. The type system lays the groundwork for the
rest of the Ajax core library.

 Next up in the core library is the Components layer. Built on top of the type sys-
tem’s solid foundation, the Components layer does a lot of the heavy lifting for
the core library. This layer provides support for JSON serialization, network com-
munication, localization, DOM interaction, and ASP.NET application services like
authentication and profiles. It also introduces the notion of building reusable
modules that can be categorized as controls and behaviors on a page.

 This brings us to the top layer in the library: the Application layer. A more
descriptive title is the application model. Similar to the page lifecycle in ASP.NET, this
layer provides an event-driven programming model that you can use to work with
DOM elements, components, and the lifecycle of an application in the browser.

HTML, JavaScript, and XML Script
ASP.NET AJAX-enabled web pages are written in HTML, JavaScript, and a new XML-
based, declarative syntax called XML Script. This provides you with more than one
option for authoring client-side code—you can code declaratively with XML Script
and imperatively with JavaScript. Elements declared in XML Script are contained
in a new script tag:

<script type="text/xml-script">

The browser can detect the script tag but doesn’t have a mechanism for process-
ing the xml-script type. Instead, the JavaScript files from the ASP.NET AJAX
framework can parse the script and create an instance of components and con-
trols on the page. Listing 1.6 provides a snippet of how XML Script is used to dis-
play a message after the page has loaded.

<script type="text/xml-script">
 <page xmlns="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <application load="page_load" />
 </components>
 </page>
</script>

Listing 1.6 XML-Script: a declarative alternative for developing Ajax-enabled pages

Hook application
load eventB

18 CHAPTER 1

Introducing ASP.NET AJAX
<script type="text/javascript">
 function page_load(sender, e){
 alert("Hello from XML-Script!");
 }
</script>

In this example, a JavaScript function called B page_load is declaratively attached
to the load event in the page lifecycle. Executing this page invokes the C page_load
function after the load event to display a message box on the client.

Why choose XML Script over JavaScript or vice versa? Sometimes the answer
comes down to your preference; some developers prefer the elegance of a
markup language over script, but others feel more comfortable and in control
coding only JavaScript. These approaches can coexist, and both have pros and
cons that we’ll discuss in their respective chapters of the book.

ASP.NET AJAX service proxies
The client framework offers the ability to call web services from JavaScript via a set
of client-side proxies that are generated from the server. These proxies can be
leveraged much like a web reference in managed .NET code.

NOTE A proxy is a class that operates as an interface to another thing—in this
case, a web service. For more on the proxy pattern, visit the Wikipedia
page at http://en.wikipedia.org/wiki/Proxy_pattern.

We’ll take a more thorough look at how this works later in the chapter. If this is some-
thing you’d like to know more about now, feel free to jump to chapter 5, where we
discuss working with services and making asynchronous calls in greater detail.

 Now that you have a high-level understanding of the client framework, let’s
move on to the server framework to complete your understanding of the overall
architecture.

Handler for
load event

C

ASP.NET Futures CTP
XML Script and some other features in the framework are delivered in a separate
set of resources called the ASP.NET Futures. These features are currently in the
Community Technology Preview (CTP) status. CTP reflects the current state of a
product that is still undergoing possible changes. In this case, the ASP.NET Fu-
tures CTP is an extension of the core ASP.NET AJAX framework that will eventually
be migrated into the core package. The good news is that we’ll cover XML Script
and other features in great detail throughout the book so nothing is left out.

http://en.wikipedia.org/wiki/Proxy_pattern
http://en.wikipedia.org/wiki/Proxy_pattern

ASP.NET AJAX architecture 19
1.2.2 Server framework

Built on top of ASP.NET 2.0 is a valuable set of controls and services that extend
the existing framework with Ajax support. This tier of the server framework is
called the ASP.NET AJAX server extensions. The server extensions are broken into
three areas: server controls, the web services bridge, and the application services
bridge. Each of these components interacts closely with the application model on
the client to improve the interactivity of existing ASP.NET pages.

ASP.NET AJAX server controls
The new set of server controls adds to the impressive arsenal of tools in the
ASP.NET toolbox and is predominantly driven by two controls. The first of these
controls is the ScriptManager, which is considered the brains of an Ajax-enabled
page. One of the many responsibilities of the ScriptManager is orchestrating the
regions on the page that are dynamically updated during asynchronous post-
backs. The second control, named the UpdatePanel, is used to define the regions
on the page that are designated for partial updates. These two controls work
together to greatly enhance the user experience by replacing traditional post-
backs with asynchronous postbacks. This results in regions of the page being updated
incrementally rather than all at once with a full page refresh.

 The remaining components of the server extensions are services that bridge
the gap between the client and server.

Web services bridge
Typically, web applications are limited to resources on their local servers. Aside
from a few external resources, like images and CSS files, applications aren’t
granted access to resources that aren’t in the scope of the client application. To
overcome these hurdles, the server extensions in the ASP.NET AJAX framework
include a web services bridge that creates a gateway for you to call external web ser-
vices from client-side script. This type of technology will be handy when we look at
how to aggregate or consume data from third-party services.

Application services bridge
Because ASP.NET AJAX is so tightly integrated with ASP.NET, access to some of the
application services like authentication and profile can be added to an existing
application almost effortlessly. This feature enables tasks like verifying a user’s cre-
dentials and accessing their profile information to originate from the client script.
This isn’t entirely necessary, but it adds to the overall user experience.

 Now that you have a general idea of what pieces form the framework, we can
begin to examine how they’re leveraged effectively. This leads to the examination
of two development scenarios.

20 CHAPTER 1

Introducing ASP.NET AJAX
1.2.3 Client-centric development model

The flexible design of the architecture naturally provides two development scenar-
ios. The first scenario is primarily implemented on the client side and is known as
the client-centric development model. The second is developed mainly on the server
side and is identified as the server-centric development model. It’s worth taking some
time to understand how these models work and when to use each of them.

 In the client-centric model, the presentation tier is driven from the client-script
using DHTML and JavaScript. This means a smarter and more interactive applica-
tion is delivered from the server to the browser when the page is first loaded. After-
ward, interaction between the browser application and the server is limited to
retrieving the relevant data necessary to update the page. This model encourages
a lot more interactivity between the user and the browser application, resulting in
a richer and more intuitive experience. Figure 1.7 illustrates the client-centric
development model.

 The client-centric model is also ideal for mashups and applications that wish to
fully exploit all the features DHTML has to offer.

NOTE A mashup is a web application that consumes content from more than
one external source and aggregates it into a seamless, interactive experi-
ence for the user.

You’ll build a simple mashup in chapter 5, once you’ve delved deeper into the net-
working components of the framework. In the meantime, Pageflakes.com provides
an excellent example of the rich content mashups can consume (see figure 1.8).

Web Browser

ASP.NET AJAX
Service Proxies

HTML + CSS

UI Behavior
Scripts

Web Server

Ajax-Enabled
Pages

UI Behavior
Scripts

Initial Delivery

Data Request

Figure 1.7 The client-centric development model is driven by a smarter and more interactive
application that runs on the browser.

ASP.NET AJAX architecture 21
An application like Pageflakes relies heavily on user interaction. In addition, the
page needs to be light, effective, and mindful of system resources. For these rea-
sons, a client-centric approach is the preferred model.

1.2.4 Server-centric development model

In the server-centric model, the application logic and most of the UI rationale
remain on the server. Incremental changes for the UI are passed down to the
browser application instead of the changes being made from the client-side script.
This approach resembles the traditional ASP.NET page model, where the server
renders the UI on each postback and sends back down to the browser a new page
to render. The difference between this model and the traditional model in
ASP.NET is that only the portions of the UI that need to be rendered are passed
down to the browser application, rather than the whole page. As a result, interac-
tivity and latency are both improved significantly. Figure 1.9 illustrates the nature
of the server-centric development model.

Figure 1.8 Pageflakes is a great example of how a mashup application consumes data from
multiple resources to enrich the user experience.

22 CHAPTER 1

Introducing ASP.NET AJAX
This approach appeals to many ASP.NET developers because it grants them the
ability to keep the core UI and application logic on the server. It’s also attractive
because of its transparency and ability to behave as a normal application if the
user disables JavaScript in the browser. When you’re working with controls like
the GridView and Repeater in ASP.NET, the server-centric model offers the sim-
plest and most reliable solution.

1.2.5 ASP.NET AJAX goals

After examining the architecture and features in the framework, you can easily
deduce the goals and intentions that ASP.NET AJAX sets out to accomplish:

■ Easy-to-use, highly productive framework—The main objective is to simplify the
efforts of adding Ajax functionality to web applications. This is accom-
plished by providing a rich client library and a comprehensive set of server
controls that are easy to use and integrate into existing applications.

■ Server programming model integration—Server controls provide ASP.NET devel-
opers with a familiar paradigm for developing web applications. These con-
trols emit the JavaScript needed to Ajax-enable a page with little effort or
knowledge of JavaScript and the XMLHttpRequest object.

■ World-class tools and components—Components and tools built on top of the
framework not only extend the framework but also provide the develop-
ment community with a rich collection of tools to leverage and build on.
This includes tools for debugging, tracing, and profiling.

■ Cross-platform support—Support for Internet Explorer, Firefox, Safari, and
Opera extracts away the hassle of dealing with browser differences and
discrepancies.

Web Browser

HTML + CSS

Web Server

Ajax-Enabled
Pages

Initial Delivery

Input Data

UI + JavaScript

Updated UI +
JavaScript

Application +
UI Logic

Figure 1.9 The Server-Centric Development model passes down to the browser
application portions of the page to update instead of a whole new page to refresh.

ASP.NET AJAX in action 23
These goals are what you’d expect from a framework: simplicity, extensibility,
community involvement, and powerful tools. Let’s start using the framework!

1.3 ASP.NET AJAX in action

So far in this chapter, we’ve touched on the XMLHttpRequest object and some of
the Ajax patterns used when developing richer, more interactive web applications.
We’ve also examined the ASP.NET AJAX architecture and the different develop-
ment scenarios that rationally emerge from its design. It’s time to apply some of
this knowledge and walk through a few quick applications that demonstrate how
to build pages with ASP.NET AJAX.

 The following sections move rather quickly, because they’re intended to give
you a whirlwind tour of the framework. Subsequent chapters will dissect and
explain each of the topics more carefully. Let’s begin the tour.

1.3.1 Simple server-centric solution

As you sit comfortably in your cubicle, reading your daily emails, the all-mighty
director of human resources appears before you and demands that you build a
web application immediately (a situation akin to a Dilbert cartoon strip). The
request is for an application that gives the user the ability to look up the number
of employees in each department of the company. After presenting you with his
demands and an impossibly short timeline, the HR director retreats to headquar-
ters as you hastily begin your new assignment.

 The first step in every ASP.NET web development endeavor is creating the ini-
tial website. To get started, launch Visual Studio 2005 (or the free Visual Web
Developer 2005), and select the ASP.NET AJAX-Enabled Web Site template from
the New Web Site dialog (see figure 1.10). This creates a site that references the
ASP.NET AJAX assembly System.Web.Extensions.dll from the Global Assembly
Cache (GAC). It also generates a complex web.config file that includes additional
settings for integration with the ASP.NET AJAX framework.

 The initial site created from the template is all you need for this example and
for a majority of ASP.NET AJAX applications that you’ll build.

TIP Details on how to install and configure the ASP.NET AJAX framework on a
development machine are explained in appendix A. All examples in this
book can also be built with the Visual Web Developer Express edition.
For simplicity, we’ll defer to Visual Studio when we mention the develop-
ment environment.

24 CHAPTER 1

Introducing ASP.NET AJAX
For the employee lookup logic, create a simple class called HumanResources.cs,
and copy the code in listing 1.7.

using System;
public static class HumanResources
{
 public static int GetEmployeeCount(string department)
 {
 int count = 0;
 switch (department)
 {
 case "Sales":
 count = 10;
 break;

 case "Engineering":
 count = 28;
 break;

 case "Marketing":

Listing 1.7 A simple class that returns the number of employees in a department

Figure 1.10 The ASP.NET AJAX-Enabled Web Site template creates a website that references
the ASP.NET AJAX assembly and configures the web.config file for Ajax integration.

ASP.NET AJAX in action 25
 count = 44;
 break;

 case "HR":
 count = 7;
 break;

 default:
 break;
 }

 return count;
 }
}

The HumanResources class contains one method, GetEmployeeCount, which takes
the department name as a parameter. It uses a simple switch statement to retrieve
the number of employees in the department. (To keeps things simple, we hard-
coded the department names and values.)

 When you created the new website, a default page named Default.aspx was also
generated. Listing 1.8 shows the initial version of the page.

<%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="Default.aspx.cs" Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 </div>
 </form>
</body>
</html>

What’s different in this page from the usual default page created by Visual Studio
is the addition of the ScriptManager control. We briefly defined the ScriptMan-
ager earlier in the chapter as the brains of an Ajax-enabled page. In this example,
all you need to know about the ScriptManager is that it’s required to Ajax-enable a

Listing 1.8 Default page created by the ASP.NET AJAX-Enabled Web Site template

ScriptManager
control

26 CHAPTER 1

Introducing ASP.NET AJAX
page—it’s responsible for delivering the client-side scripts to the browser and
managing the partial updates on the page. If these concepts still sound foreign,
don’t worry; they will make more sense once you start applying them.

 As it turns out, creating the application requested by HR is fairly trivial. List-
ing 1.9 shows the markup portion of the solution.

<div>
 <asp:ListBox AutoPostBack="true" runat="server" ID="Departments"

OnSelectedIndexChanged="Departments_SelectedIndexChanged">
 <asp:ListItem Text="Engineering" Value="Engineering" />
 <asp:ListItem Text="Human Resources" Value="HR" />
 <asp:ListItem Text="Sales" Value="Sales" />
 <asp:ListItem Text="Marketing" Value="Marketing" />
 </asp:ListBox>
</div>

<div>
 <asp:Label ID="EmployeeResults" runat="server" />
</div>

A ListBox is used to display the catalog of departments to choose from. The Auto-
PostBack property of the control is initialized to B true so that any selection made
invokes a postback on the form. This action fires the SelectedIndexChanged event
and calls the C Departments_SelectedIndexChanged handler in the code. At the
bottom of the page is a Label control where D the results are displayed. To com-
plete the application, you implement the UI logic that looks up the employee count
for the selected department in the code-behind file (see listing 1.10).

protected void Departments_SelectedIndexChanged(object sender,
 EventArgs e)
{
 EmployeeResults.Text = string.Format("Employee count: {0}",
 HumanResources.GetEmployeeCount(Departments.SelectedValue));
}

When the application is launched and one of the departments is selected, it
should look like figure 1.11.

Listing 1.9 Setting AutoPostBack to true causes a postback and invokes the server-
 side code.

Listing 1.10 Retrieve the employee count and update the UI when a new department
 has been selected.

Invoke postbacks on each update B

Register
handlerC

Label for
results

D

ASP.NET AJAX in action 27
The program works as expected: Selecting a department retrieves the number of
employees and displays the results at the bottom of the page. The only issue is that
the page refreshes each time a new department is chosen. Handling this is also triv-
ial; you wrap the contents of the form in an UpdatePanel control (see listing 1.11).

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <div>
 <asp:ListBox AutoPostBack="true" runat="server" ID="Departments"
 OnSelectedIndexChanged="Departments_SelectedIndexChanged">
 <asp:ListItem Text="Engineering" Value="Engineering" />
 <asp:ListItem Text="Human Resources" Value="HR" />
 <asp:ListItem Text="Sales" Value="Sales" />
 <asp:ListItem Text="Marketing" Value="Marketing" />
 </asp:ListBox>
 </div>

 <div>
 <asp:Label ID="EmployeeResults" runat="server" />
 </div>
 </ContentTemplate>
</asp:UpdatePanel>

Listing 1.11 UpdatePanel control, designating page regions that can be
 updated dynamically

Figure 1.11 The employee-lookup application before adding any Ajax support

Content that
can be updated

dynamically

28 CHAPTER 1

Introducing ASP.NET AJAX
As an alternative, figure 1.12 shows what the solution looks like from the Design
view in Visual Studio.

 By default, content placed in the ContentTemplate tag of the UpdatePanel
control is updated dynamically when an asynchronous postback occurs. This addi-
tion to the form suppresses the normal postback that most ASP.NET developers
are accustomed to and sends back to the server an asynchronous request that
delivers to the browser the new UI for the form to render.

 What do we mean when we say asynchronous postback? Most ASP.NET developers
are familiar with only one kind of postback. With the UpdatePanel, the page still
goes through its normal lifecycle, but the postback is marked as being asynchro-
nous with some creative techniques that we’ll unveil in chapter 7. As a result, the
page is handled differently during the lifecycle so that updates can be made incre-
mentally rather than by refreshing the entire page. For now, you can see that add-
ing this type of functionality is simple and transparent to the logic and
development of the page.

 The next time you run the page and select a department, the UI updates
dynamically without a full page refresh. In summary, by adding a few new server
controls on the page you’ve essentially eliminated the page from reloading itself
and taking away any interaction from the user.

1.3.2 UpdateProgress control

You show the application to the director of human resources, who is impressed.
However, he notices that when he goes home and tries the application again, with
a slow dial-up connection, it takes significantly longer for the page to display the

Figure 1.12
Using the Design view in
Visual Studio provides a
visual alternative to editing
the layout and elements on
the page.

ASP.NET AJAX in action 29
results. The delay in response time confuses the director and initially makes him
wonder if something is wrong with the application.

 Before the introduction of Ajax, a page being refreshed was an indication to
most users that something was being processed or that their actions were
accepted. Now, with the suppression of the normal postback, users have no indica-
tion that something is happening in the background until it’s complete. They
need some sort of visual feedback notifying them that work is in progress.

 The UpdateProgress control offers a solution to this problem. Its purpose is to
provide a visual cue to the user when an asynchronous postback is occurring. To
please the HR director, you add the following snippet of code to the end of the page:

<asp:UpdateProgress ID="UpdateProgress1" runat="server">
 <ProgressTemplate>
 Loading ...
 </ProgressTemplate>
</asp:UpdateProgress>

When you run the application again, the visual cue appears when the user selects
a new department (see figure 1.13).

 If you’re running this application on your local machine, chances are that the
page updates fairly quickly and you may not get to see the UpdateProgress control
working. To slow the process and see the loading indicator, add to the code the
Sleep command shown in listing 1.12.

Figure 1.13 It’s generally a good practice to inform users that
work is in progress during an asynchronous update.

30 CHAPTER 1

Introducing ASP.NET AJAX
protected void Departments_SelectedIndexChanged(object sender,
 EventArgs e)
{
 EmployeeResults.Text = string.Format("Employee count: {0}",
 HumanResources.GetEmployeeCount(Departments.SelectedValue));

 System.Threading.Thread.Sleep(2000);
}

WARNING Don’t call the Sleep method in production code. You use it here only for
demonstration purposes so you can see that the UpdateProgress control
is working.

When used effectively with the UpdatePanel, the UpdateProgress control is a
handy tool for relaying visual feedback to the user during asynchronous opera-
tions. We discuss best practices throughout the book; in this case, providing visual
feedback to the user is strongly encouraged.

1.3.3 Simple client-centric example

The server-centric approach is appealing because of its simplicity and transparency,
but it has drawbacks as well. Ajax development is more effective and natural when
the majority of the application is running from the browser instead of on the server.
One of the main principles of an Ajax application is that the browser is supposed
to be delivered a smarter application from the server, thus limiting the server’s role
to providing only the data required to update the UI. This approach greatly reduces
the amount of data sent back and forth between the browser and server.

 To get started with the client-centric approach, let’s add a new web service
called HRService.asmx. For clarity, deselect the Place Code in Separate File option
in the Add New Item dialog, and then add the service.

TIP A common best practice would be to define an interface first (contract first)
and to keep the logic in a separate file from the page. However, this exam-
ple keeps things simple so we can remain focused on the Ajax material.

Next, paste the code from listing 1.13 into the web service implementation to add
support for looking up the employee count.

Listing 1.12 Adding a Sleep command to test the UpdateProgress control.

Testing
only

ASP.NET AJAX in action 31
using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Web.Script.Services;

[ScriptService]
[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class HRService : System.Web.Services.WebService {

 [ScriptMethod]
 [WebMethod]
 public int GetEmployeeCount(string department)
 {
 return HumanResources.GetEmployeeCount(department);
 }
}

First, note the B using statement for the System.Web.Script.Services name-
space. This namespace is part of the core ASP.NET AJAX framework that encapsu-
lates some of the network communication and scripting functionality. It’s not
required, but it’s included to save you a little extra typing. Next are the new
attributes adorned on the C class and D method declarations of the web service.
These attributes are parsed by the ASP.NET AJAX framework and used to deter-
mine what portions of the service are exposed in the JavaScript proxies. The
ScriptMethod attribute isn’t required, but you can use it to manipulate some of a
method’s settings.

 If you view the ASMX file in your browser but append /js to the end of the
URL, you get a glimpse of the JavaScript proxy that is generated for this service.
Figure 1.14 shows the generated JavaScript proxy that is produced by the frame-
work after decorating the class and methods in the web service.

 In chapter 5, we’ll spend more time explaining what the proxy generates. In
the meantime, if you glance at the proxy, you’ll notice at the end the matching
call to the service method GetEmployeeCount. This gives the client-side script a
mechanism for calling the web methods in the service. The call takes a few extra
parameters that you didn’t define in the service.

 With a web service ready to go, you can create a new page for this solution.
Start by adding a new web form to the site, called EmployeeLookupClient.aspx.
The first requirement in adding Ajax support to the page is to include the Script-
Manager control. This time, you’ll also declare a service reference to the local web

Listing 1.13 Adding attributes to the class and methods

Namespace for
script services

B

Declare service for
scripting support

C

Declare method for
scripting supportD

32 CHAPTER 1

Introducing ASP.NET AJAX
service, to generate the JavaScript proxies for the service that you can now call
from in the client-side script (see listing 1.14).

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="HRService.asmx" />
 </Services>
</asp:ScriptManager>

To complete the declarative portion of the solution, copy the code shown in list-
ing 1.15.

Listing 1.14 Adding a service reference, which will generate the JavaScript proxies

Figure 1.14 The framework generates a JavaScript proxy so calls to a web service can be
made from the client-side script.

Reference for
JavaScript proxies

ASP.NET AJAX in action 33
<div>
 <select id="Departments" size="5">
 <option value="Engineering">Engineering</option>
 <option value="HR">Human Resources</option>
 <option value="Sales">Sales</option>
 <option value="Marketing">Marketing</option>
 </select>
</div>

<div>

 Loading ...

</div>

Because you aren’t relying on any of the business or UI logic to come from the server,
you can use normal HTML elements on the page instead of the heavier server con-
trols. This includes a select element for the list of B departments and a C span
element to display visual feedback to the user when retrieving data from the server.
To make this page come to life, add the JavaScript shown in listing 1.16.

<script type="text/javascript">
<!--

 var departments = null;

 Sys.Application.add_load(page_load);
 Sys.Application.add_unload(page_unload);

 function page_load(sender, e){
 departments = $get("Departments");
 $addHandler(departments, "change", departments_onchange);
 }

 function page_unload(sender, e){
 $removeHandler(departments, "change", departments_onchange);
 }

 function departments_onchange(sender, e){
 $get("employeeResults").innerHTML = "";
 $get("loading").style.display = "block";

Listing 1.15 Markup portion of the client-centric solution

Listing 1.16 The script portion of the employee lookup application

List of
departmentsB

Visual feedback
during data
retrieval

C

Register load and
unload events

B

Register
change
event

C

Release change event D

34 CHAPTER 1

Introducing ASP.NET AJAX
 var selectedValue = departments.value;
 HRService.GetEmployeeCount(selectedValue, onSuccess);
 }

 function onSuccess(result){
 $get("loading").style.display = "none";
 $get("employeeResults").innerHTML = "Employee count: " + result;
 }

//-->
</script>

Note the functions registered with the application model for the B load and
unload events in the browser. If you recall from the earlier overview of the core
library, the client framework provides a page lifecycle similar to the ASP.NET lifecy-
cle. In this case, you use the load event as an opportunity to C register a handler
for any changes to the list of departments. In addition, you use the unload event
to responsibly D remove the registered handler.

 Here’s something new: commands that begin with $. These are shortcuts or
alias commands that are eventually translated to their JavaScript equivalents. For
example, $get is the same as document.getElementById. This little touch comes
in handy when you’re being mindful of the size of your JavaScript files. It also pro-
vides an abstraction layer between browser differences.

 This brings us to the registered handler that’s invoked each time the user selects
a new department from the user interface. When this happens, you make a E call
to the web service to retrieve the employee count:

HRService.GetEmployeeCount(selectedValue, onSuccess);

The first parameter in the call is the selected department in the list. The second
parameter is the name of a callback function that is called when the method
returns successfully. When the call F returns, the user interface is updated
dynamically. Running the application produces an output similar to the previous
server-centric example.

1.4 Summary

In this chapter, we began with an introduction to Ajax and the XMLHttpRequest
control. We then moved to the ASP.NET AJAX framework and examined its archi-
tecture and goals. Keeping things at an upbeat pace, we delved into the frame-
work with examples for both client-side and server-side development. As a result,

Call JavaScript proxy E

Display results F

Summary 35
you may have felt rushed toward the end of the chapter. Fortunately, the remain-
ing chapters will investigate and clarify each portion of the framework in much
more detail.

 This chapter was intended to whet your appetite for what the framework can
accomplish. You should now have a high-level understanding of how ASP.NET
AJAX empowers you to quickly and more easily deliver Ajax-enabled applications.

 Succeeding chapters will build on this foundation by going deeper into both
the client- and server-side portions of the framework. The next chapter begins our
discussion of the client-side framework by examining the Microsoft Ajax Library
and how it simplifies JavaScript and Ajax development.

First steps with the
Microsoft Ajax Library
In this chapter:
■ Overview of the Microsoft Ajax Library
■ The Application model
■ The abstraction API for working with the DOM
■ JavaScript extensions
36

A quick overview of the library 37
In the age of Ajax programming, web developers need to be more JavaScript pro-
ficient than ever. You must accomplish a long list of tasks in an Ajax-enabled page
and coordinate activities on the client side. For example, you need the ability to
access server resources, process the results quickly, and maintain smooth web-
page interactivity. The need for programming patterns that build robust and
maintainable code is also on the rise. In a nutshell, a consistent client-side pro-
gramming environment that works on all modern browsers is essential.

 This chapter is the first one dedicated to the Microsoft Ajax Library, which is
written on top of JavaScript and constitutes the client portion of the ASP.NET AJAX
framework. In the tour of the basic framework components in chapter 1, you
began to write code using the library’s syntax. This chapter will provide more
examples and give you a comprehensive overview of the library’s features.

2.1 A quick overview of the library

The Microsoft Ajax Library provides a rich set of tools for managing nearly every
aspect of client development. The library isn’t just a simple framework for send-
ing asynchronous requests using the XMLHttpRequest object. Instead, one of its
main goals is to bring to the client side many coding patterns familiar to .NET
developers. Such .NET flavors include the possibility of exposing multicast events
in JavaScript objects and leveraging a component model on the client side. The
library also enhances the JavaScript language’s type system and lets you write cli-
ent code using object-oriented constructs like classes and interfaces. In addition,
you can easily access local web services using JavaScript and deal with the ASP.NET
application services, such as membership and profile, from the client side. None-
theless, this is just a taste of the goodies provided by the library.

2.1.1 Library features

The Microsoft Ajax Library is rich in features, which we’ve grouped into logical
categories. Because we can’t explore all of them in a single chapter, the following
list shows how the features are distributed in the book’s various chapters:

■ Application model—When you enable the Microsoft Ajax Library in a web
page, an Application object is created at runtime. In section 2.2, you’ll dis-
cover that this object takes care of managing the client lifecycle of a web
page, in a manner similar to what the Page object does on the server side.
The Application object hosts all the client components instantiated in the
web page and is responsible for disposing them when the page is unloaded
by the browser.

38 CHAPTER 2

First steps with the Microsoft Ajax Library
■ Components—The Microsoft Ajax Library brings to the client side a compo-
nent model similar to that provided by the .NET framework. You can create
visual or nonvisual components, depending on whether they provide a UI.
In chapter 8, which is entirely dedicated to the client component model,
you’ll see also how visual components can be associated with Document
Object Model (DOM) elements.

■ JavaScript extensions—As you’ll see in chapter 3, the library leverages the
object model provided by JavaScript by introducing an enhanced type sys-
tem that supports reflection and object-oriented constructs like classes,
interfaces, and enumerations. In addition, the built-in JavaScript objects
have been extended to support methods commonly found in .NET classes.

■ Compatibility—Section 2.3 covers the abstraction API, which is a set of client
methods for writing code that runs smoothly in all the supported browsers.
This API abstracts common operations performed on DOM elements, such
as handling events and dealing with CSS and positioning.

■ Ajax—The library isn’t exempt from providing a communication layer for
sending asynchronous HTTP requests using the XMLHttpRequest object.
Chapter 5 is entirely dedicated to the networking layer.

■ Application services—By using the Microsoft Ajax Library, ASP.NET develop-
ers can deal with the authentication, membership, and profile providers on
the client side. You can interact with the providers through proxy services
by writing JavaScript code in the page.

■ Partial rendering—The UpdatePanel control, introduced in chapter 1, makes
it possible to update portions of the page’s layout without refreshing the
whole UI. This mechanism, called partial rendering, is leveraged on the client
side by an object called the PageRequestManager. In chapter 7, when we dis-
cuss what happens under the hood of the UpdatePanel, we’ll explain how
the Microsoft Ajax Library participates in the partial-rendering mechanism.

Some of the features in the ASP.NET Futures package are interesting, and we
decided to cover them in this book. Chapter 11 is dedicated to XML Script, a
declarative language—similar to the ASP.NET markup language—used to create
JavaScript objects without writing a single line of JavaScript code. Chapter 12 talks
about how to perform drag and drop using the Microsoft Ajax Library.

 Before proceeding, let’s establish a couple of conventions relative to the termi-
nology we’ll use throughout the book. JavaScript is an object-oriented language;
but, unlike C# or VB.NET, it doesn’t support constructs like classes and namespaces.
Nonetheless, as you’ll see in chapter 3, you can manipulate JavaScript functions in

A quick overview of the library 39
interesting ways to simulate these and other object-oriented constructs. For this
reason, when talking about client JavaScript code, we often borrow terms such as
class, method, interface, and others from the common terminology used in object-
oriented programming. For example, when we talk about a client class, we’re refer-
ring to a class created in JavaScript with the Microsoft Ajax Library.

 We’re ready to start exploring the library. The first step is learning how to load
the library’s script files in a web page.

2.1.2 Ajax-enabling an ASP.NET page

The Microsoft Ajax Library is organized in client classes contained in namespaces.
The root namespace is called Sys. The other namespaces are children of the root
namespace. Table 2.1 lists the namespaces defined in the library and the type of
classes that they contain.

The Microsoft Ajax Library consists of multiple JavaScript files loaded by the
browser at runtime. These files are embedded as web resources in the Sys-
tem.Web.Extensions assembly, which is installed in the Global Assembly Cache
(GAC) by the Microsoft ASP.NET AJAX Extensions installer.

 As you already know from chapter 1, the library files are automatically loaded
into an ASP.NET page as soon as you declare a ScriptManager control. Therefore,
every Ajax-enabled ASP.NET page must contain a ScriptManager control:

<asp:ScriptManager ID="TheScriptManager" runat="server" />

Table 2.1 Namespaces defined in the Microsoft Ajax Library. The root namespace defined by the
 library is called Sys

Namespace Content

Sys Base runtime classes, Application object

Sys.Net Classes that belong to the networking layer

Sys.UI Classes for working with components and the DOM

Sys.Services Classes for accessing ASP.NET services like profile, membership,
and authentication

Sys.Serialization Classes for JSON serialization/deserialization

Sys.WebForms Classes related to partial page rendering

40 CHAPTER 2

First steps with the Microsoft Ajax Library
Table 2.2 lists the script files that make up the Microsoft Ajax Library, along with
the description of the functionality they provide.

The Microsoft Ajax Library is written in pure JavaScript, so it isn’t tied to the
ASP.NET framework. If you want to work with the library without using ASP.NET,
you need to reference the script files with script tags in the web page. However,
the script files in the ASP.NET AJAX installation directory don’t include some
resources files needed by the library at runtime. For this reason, you need to
download the Microsoft Ajax Library package, which includes all the library files
and the resource files; it’s available for download at the ASP.NET AJAX official web-
site (http://ajax.asp.net).

 All the library files are provided in debug and release versions. The debug ver-
sion facilitates the debugging of the script files. It contains comments and takes
advantage of a number of tricks that make debuggers happy. For example, it
avoids using anonymous JavaScript functions to show more informative stack
traces. In addition, calls to functions are validated to ensure that the number and
types of parameters are those expected. The debug version of a library file is
slower and bigger than the release version; the release version is compressed,
comments are removed, and validation doesn’t take place. This results in faster
and considerably shorter code.

 Let’s examine the options you have to load the desired version of a script file.

2.1.3 Script versions

You can load the desired version of a script through the ScriptManager control.
You can also load debug and release versions of custom script files. Debug and
release versions are distinguished by the file extension: The debug version has the
extension .debug.js, and the release version has the normal .js extension.

Table 2.2 The Microsoft Ajax Library features are distributed across multiple JavaScript files.

Filename Features

MicrosoftAjax.js The core library that contains the JavaScript extensions, the type sys-
tem, classes for the object-oriented patterns, the communication layer,
classes for creating components, and classes for dealing with the
browser’s DOM

MicrosoftAjaxTimer.js Contains the client timer component used by the Timer server control

MicrosoftAjaxWebForms.js Contains classes for supporting the partial-update mechanism used by
the UpdatePanel server control

http://ajax.asp.net
http://ajax.asp.net

A quick overview of the library 41
 To load either the debug or the release version, you have to set the ScriptMode
property of the ScriptReference control that references the script file in the
ScriptManager. For example, suppose you want to load the release version of a
custom script file called MyScriptFile.js, stored in the ScriptLibrary folder of the
website. Here’s how the ScriptManager control will look:

<asp:ScriptManager ID="TheScriptManager" runat="server">
 <Scripts>
 <asp:ScriptReference Path=" ~/ScriptLibrary/MyScriptFile.js"
 ScriptMode="Release" />
 </Scripts>
</asp:ScriptManager>

Because the ScriptMode property is set to Release, the script file loaded in the
page is MyScriptFile.js. If you set the value of the property to Debug, the MyScript-
File.debug.js file is loaded.

NOTE Regardless of whether you’re loading the debug or release version, the
name of the script file in the Path attribute must always be that of the
release version.

The ScriptMode attribute can take one of the following values:

■ Auto—The name of the script file to load matches the one specified in the
Path property. This is the default value.

■ Inherit—The ScriptManager control infers the name of the script file
from the compilation mode of the website, as configured in the web.config
file. If you’re running in debug mode, the ScriptManager loads the file with
the .debug.js extension. Otherwise, it loads the file with the .js extension.

■ Debug—The ScriptManager loads the debug version of the script file.
■ Release—The ScriptManager loads the release version of the script file.

In chapter 13, we’ll explain some techniques used to develop a debug version of a
custom script file.

 After this quick overview of the Microsoft Ajax Library, let’s examine some of
the features in more detail. In the next sections, we’ll discuss the foundations of
the library: the Application model and the client page lifecycle.

42 CHAPTER 2

First steps with the Microsoft Ajax Library
2.2 The Application model

A web application is made up of pages. Because ASP.NET pages follow an object-
oriented model, each page is modeled with an instance of the Page class, which
encapsulates a hierarchy of controls. Controls follow the page lifecycle, which is a set
of processing steps that start when the Page instance is created and consists of
multiple, sequential stages. In the initial stages, like Init, controls are instantiated
and their properties are initialized. In the final stages, Render and Dispose, the
HTML for the page is written in the response stream, and all the controls and
resources, as well as the Page instance itself, are disposed.

NOTE To learn more about the ASP.NET page lifecycle, check the MSDN docu-
mentation at http://msdn2.microsoft.com/en-us/library/ms178472.
aspx.

Imagine that the web page has completed its lifecycle on the server side. The Page
instance and the controls raised their events, and you handled them to inject the
custom application logic. The HTML for the page is ready to be sent down to the
browser. If you enabled the Microsoft Ajax Library, a new lifecycle starts on the cli-
ent side. As soon as the browser loads the main script file, MicrosoftAjax.js, the cli-
ent runtime creates a global JavaScript object—the Application object—and
stores it in a global variable called Sys.Application.

 This new object becomes the brains of a web page in the browser. Despite its
name, it plays a role similar to the Page object on the server side. Once the Page
object is done on the server side, the processing on the client side is delegated to
Sys.Application, as illustrated in figure 2.1.

 The introduction of a global Application object in the browser isn’t meant to
revolutionize the way you write the client code. The goal is to achieve consistency
between the programming models used on both the server and client sides. The
main objectives of Sys.Application are as follows:

Web Server

System.Web.UI.Page

Client

Sys.Application

Figure 2.1
On the server side, an ASP.NET page
is represented by an instance of the
Page class. In a similar manner, on
the client side, you have the global
Sys.Application object.

http://msdn2.microsoft.com/en-us/library/ms178472.aspx
http://msdn2.microsoft.com/en-us/library/ms178472.aspx

The Application model 43
■ Providing a centralized place to execute the client code—This goal is reached by
defining a custom page lifecycle on the client. As you’ll see in a moment,
the client page lifecycle starts when the browser loads the page and ends
when the user navigates away from the page or the page is reloaded. When
each stage in the lifecycle is entered, the Application object raises a corre-
sponding event.

■ Hosting the client components instantiated in the page—Once instantiated, client
components become children of the Application object and can be easily
accessed through the Application object. Also, they’re automatically disposed
by the Application object when the web page is unloaded by the browser.

Client components and the client-page lifecycle are the key concepts we’ll dissect
in the following sections. Let’s start by illustrating the concept of a client compo-
nent. Then, we’ll focus on the client-page lifecycle and the events raised by the
Application object.

2.2.1 Client components

Let’s say you need a hierarchical menu for navigating the pages of a website.
Whether it’s written in C# or JavaScript—assuming it isn’t poorly designed—you
usually don’t have to know anything about the logic used to render the menu.
Instead, you only have to configure the menu and instantiate it in the page. If you
also need the same menu in a different page, you perform similar steps to include
and initialize it. The point is, the code should be packaged into a single, config-
urable object that can be reused in another application.

 The primary tenet behind components is code reusability. Components imple-
ment a well-defined set of interfaces that allows them to interact with other com-
ponents and to be interchanged between applications. Thanks to the base
interfaces, the code encapsulated by components can change at any time without
affecting the other processing logic.

 The Microsoft Ajax Library provides specialized client classes that simplify the
authoring of client components. The group of classes related to component
development is called the client component model and closely mirrors the model in
use in the .NET framework. In this way, you can write component-oriented client
applications using JavaScript code.

 We’ll explore the nuts and bolts of client components in chapter 8. For now, it’s
enough to treat a client component as a black box that encapsulates reusable client
logic and exposes it through methods, properties, and events, as shown in figure 2.2.
You’ve already met your first component: the Application object introduced in the
previous section. In the following section, we’ll explain how the Application object
and client components interact during the client-page lifecycle.

44 CHAPTER 2

First steps with the Microsoft Ajax Library
2.2.2 Client-page lifecycle

Previously, we pointed out the Application object acts on the client side like the
counterpart of the Page object. The Page object manages the lifecycle of a web
page on the server side, and the Sys.Application object accomplishes the same
task on the client side. The client lifecycle of a web page is much simpler than the
server lifecycle of an ASP.NET page. It consists of only three stages: init, load, and
unload. When each stage is entered, the Sys.Application object fires the corre-
sponding event—init, load, or unload.

 As shown in the activity diagram in figure 2.3, the client-page lifecycle starts
when the browser loads a page requested by the user and ends when the user nav-
igates away from the page. Let’s examine the sequence of events in more detail.

Component

Logic
Events

Properties

Methods

Figure 2.2
A component encapsulates some logic and exposes
it through properties, methods and events.

Window Sys.Application Component

1. Open page

5. Close page

2. load

6. unload

3. init

7. unload

4. load

Figure 2.3 The client-page lifecycle starts when the browser loads a web page. The Sys.Application object
is responsible for hooking up the events raised by the window object and, in turn, firing its own events.
Client components are created during the init stage and disposed automatically in the unload stage.

The Application model 45
When the browser starts loading a web page, the DOM’s window object fires the
load event. This event is intercepted by the Application object, which, in turn,
starts initializing the Microsoft Ajax Library’s runtime. When the runtime has
been initialized, Sys.Application fires the init event. During the init stage, all the
client components you want to use should be instantiated and initialized. As you’ll
discover in chapter 8, client components are instantiated using a special function
called $create and are automatically hosted by the Application object.

 After the creation of components is complete, Sys.Application fires the load
event. This stage provides you with an opportunity to interact with the compo-
nents created in the init stage. This is also the best place to attach event handlers
to DOM elements and perform data access—for example, using the techniques
for sending asynchronous requests that we’ll illustrate in chapter 5.

 When the user navigates away from the page or reloads it, the unload event of
the window object is intercepted by Sys.Application, which in turns fires its own
unload event. At this point, all the resources used by the page should be freed and
event handlers detached from DOM elements.

 The events raised by the Sys.Application object and, in general, by client com-
ponents are different from the events raised by DOM elements. In chapter 3, we’ll
explain how to expose events in JavaScript objects. The event model used by the
Microsoft Ajax Library is similar to the model used by the .NET framework: Events
support multiple handlers and can be subscribed and handled in a manner similar
to the events raised by ASP.NET server controls.

 It’s not difficult to deduce that one of the objectives of the Microsoft Ajax
Library is bringing .NET flavors to the client side. The Application object, client
components, events, and client-page lifecycle are the foundations of the Microsoft
Ajax Library. They let ASP.NET developers use familiar development patterns even
when writing JavaScript code. Before we go any further, let’s take a moment to
reinforce what you’ve learned by putting together a simple program.

2.2.3 “Hello Microsoft Ajax!”

This example illustrates how to write a simple program with the Microsoft Ajax
Library. Because we’ve discussed the Application object and the client-page lifecy-
cle, we’ll show them in action in a page. The quickest way to start programming
with the Microsoft Ajax Library is to create a new Ajax-enabled website using the
Visual Studio template shipped with ASP.NET AJAX. See appendix A for instruc-
tions on how to install the Visual Studio template. The template creates a new
website and adds a reference to the System.Web.Extensions assembly and a prop-
erly configured web.config file. In addition, it creates a Default.aspx page with a
ScriptManager control already in it. To run the following example, open the
Default.aspx page and insert the code from listing 2.1 in the page’s form tag.

46 CHAPTER 2

First steps with the Microsoft Ajax Library
<script type="text/javascript">
<!--
 function pageLoad() {
 alert("Page loaded!");
 alert("Hello Microsoft Ajax!");
 }

 function pageUnload() {
 alert("Unloading page!");
 }
//-->
</script>

The code in listing 2.1 is simple enough for a first program. It consists of two Java-
Script functions, pageLoad and pageUnload, embedded in a script tag in the
markup code of the web page. In the functions, you call the JavaScript’s alert
function to display some text in a message box on screen.

 The names of the functions aren’t chosen at random. Provided that you’ve
defined them in the page, the Microsoft Ajax Library automatically calls the page-
Load function when the load stage of the client page lifecycle is entered. The
pageUnload function is automatically called when the unload stage is reached.

 When you run the page, the code in pageLoad is executed as soon as the load
stage is entered. Figure 2.4 shows the example up and running in Internet
Explorer. To see what happens during the unload stage, you can either press the
F5 key or navigate away from the page.

Listing 2.1 Code for testing the client-page lifecycle

Figure 2.4
The “Hello Microsoft Ajax!” program
running in Internet Explorer

The Application model 47
If you want to detect the init stage, you have to do a little more work. Declaring a
pageInit function won’t have any effect. Instead, you have to write an additional
statement with a call to the add_init method of Sys.Application, as shown in list-
ing 2.2.

Sys.Application.add_init(pageInit);

function pageInit() {
 alert("Entered the Init stage!");
}

The add_init method adds an event handler for the init event of Sys.Applica-
tion. The event handler is the pageInit function you passed as an argument to
the method. The Application object also has add_load and add_unload methods,
which add event handlers to the load and unload events, respectively. However,
the pageLoad and the pageUnload functions offer a way to execute code during
the load and unload stages of the client page lifecycle.

 The init stage is typically used to create instances of the client components you
use in the page. However, we won’t deal with it until chapter 8, where we’ll
explain the nuts and bolts of client components. The majority of the client code,
including attaching event handlers to DOM elements and sending Ajax requests,
can be safely executed in the pageLoad function.

 Now that you’ve written your first program, let’s focus on the client code a lit-
tle more. Web developers use JavaScript primarily to access a web page’s DOM.
The DOM is an API used to access a tree structure built from a page’s markup
code. The following sections explore how to use the Microsoft Ajax Library to pro-
gram against the browser’s DOM.

Listing 2.2 Handling the init event of Sys.Application

The pageLoad function
When you’re using the Microsoft Ajax Library, the pageLoad function is the best
place to execute the client code. Handling the window.load event isn’t safe be-
cause the library handles it to perform the runtime initialization. It's always safe
to run the code during the load stage of the client-page lifecycle, because the
runtime initialization is complete, all the script files referenced through the
ScriptManager control have been loaded, and all the client components have
been created and initialized.

48 CHAPTER 2

First steps with the Microsoft Ajax Library
2.3 Working with the DOM

When a browser renders a page, it builds a hierarchical representation (called the
DOM tree) of all the HTML elements like buttons, text boxes, and images. Every ele-
ment in the page becomes a programmable control in the DOM tree and exposes
properties, methods, and events. For example, an input tag with its type attribute
set to button is parsed into a button object with a value property that lets you set
its text. The button can also raise a click event when it’s clicked. The ability to
manipulate DOM elements makes the difference between static and dynamic
HTML pages. It’s possible to change the behavior of the UI elements at any time,
based on the user’s inputs and interactions with the page.

 But this is where life gets tricky. Almost all browsers implement the DOM pro-
gramming interface differently. In some cases, there are differences between ver-
sions of the same browser. This means a dynamic page that works on one
browser may stop working on another browser and complain about JavaScript
errors. At this point, you’re forced to duplicate the code to work around the
browser incompatibilities.

 The Microsoft Ajax Library addresses this serious problem by providing an
abstraction API whose purpose is to abstract common operations made on DOM
elements, such as handling their events and working with CSS. As we’ll explain,
the API frees you from having to know which functions are supported by the DOM
implementation of a particular browser. It takes care of calling the correct func-
tion based on the browser that is rendering the page.

2.3.1 The abstraction API

The Microsoft Ajax Library lets you access the DOM in a manner independent
from the browser that renders the page. The abstraction API consists of the meth-
ods exposed by two client classes: Sys.UI.DomElement and Sys.UI.DomEvent. The
first one abstracts a DOM element, and the second represents the event data
object that DOM event handlers receive as an argument.

 Using this model, you prevent the code from dealing directly with the
browser’s API. Instead, you call methods defined in the Microsoft Ajax Library,
which takes care of calling the correct function based on the browser that is cur-
rently rendering the page. Figure 2.5 illustrates this concept by showing how the
DOM calls in a script file can be made through the Sys.UI.DomElement and
Sys.UI.DomEvent classes.

 For example, suppose you want to hook up an event raised by a DOM element.
Instead of checking whether a browser supports an attachEvent rather than an
addEventListener method, you can call the addHandler method of the

Working with the DOM 49
Sys.UI.DomElement class. Then, it’s up to the Microsoft Ajax Library to call the
correct function based on the detected browser.

 You know that Firefox passes the event object as an argument to the event han-
dler, whereas Internet Explorer stores its custom event object in the win-
dow.event property. If you use the abstraction API, the same cross-browser event
object is always passed as an argument to the event handler. Thanks to the cross-
browser event object, you’re also freed from the pain of dealing with different
properties that describe the same event data.

 To give you confidence using the API, let’s work on an example that explains
how to use some of the methods provided to handle an event raised by a DOM ele-
ment. Later, we’ll address CSS and positioning.

2.3.2 A dynamic, cross-browser text box

One of the main uses of JavaScript is to check and validate user input before a web
form is submitted to the server. To perform this task, you often have to write client
logic that limits the values a user can enter in a text field. As an example, suppose
you want a user to enter some text in a text box. The requirements say that the text
must contain only letters—no digits. To implement this task, you must access the
text-box element, handle its keypress event, and filter the text typed by the user.
Listing 2.3 shows how this task can be accomplished using the Microsoft Ajax
Library. Notably, the resulting code runs in all the browsers supported by the library.

<div>
 Please type some text:
 <input type="text" id="txtNoDigits" />
</div>

<script type="text/javascript">

Listing 2.3 A text box that accepts only letters

Internet Explorer

Firefox

Safari

Opera

Sys.UI.DomElement
Sys.UI.DomEvent.js

Figure 2.5
The Microsoft Ajax
Library provides a common
interface to different DOM
implementations. The
library translates the DOM
calls made with the
Sys.UI.DomElement
class into browser-specific
functions.
Sys.UI.DomEvent offers a
cross-browser object for
representing event data.

50 CHAPTER 2

First steps with the Microsoft Ajax Library
<!--
 function pageLoad() {
 var txtNoDigits = $get('txtNoDigits');

 $addHandler(txtNoDigits,
 'keypress', txtNoDigits_keypress);
 }

 function pageUnload() {
 $removeHandler($get('txtNoDigits'),
 'keypress', txtNoDigits_keypress);
 }

 function txtNoDigits_keypress(evt) {
 var code = evt.charCode;

 if(code >= 48 && code <= 57) {
 evt.preventDefault();
 }
 }
//-->
</script>

As you know, the code in the pageLoad function is executed as soon as the load
stage of the client page lifecycle is entered. The function body contains calls to
the $get and $addHandler methods.

The first method called in pageLoad is $get, which gets a reference to a DOM ele-
ment. $get accepts the ID of a DOM element and returns a reference to it. You can
also pass a reference to a DOM element as the second parameter. In this case, the
method searches an element with the given ID in the child nodes of the provided
DOM element.

Access text
box element

Attach event
handler

Detach event
handler

Handle keypress
event

Shortcuts
As we explained in chapter 1, functions prefixed with the character $ are aliases
or shortcuts used to access methods with longer names. This saves you a little
typing. Even if it seems like a minor detail, using shortcuts is useful for obtaining
shorter code and smaller JavaScript files. Table 2.3 lists some of the shortcuts
defined in the Microsoft Ajax Library together with the longer name of the asso-
ciated method.

Working with the DOM 51
The second method, $addHandler, adds an event handler for an event raised by a
DOM element. The first argument is a reference to the element that exposes the
event you want to subscribe. The second argument is a string with the name of the
event. The third argument is the JavaScript function that handles the event. The
syntax of $addHandler is illustrated in figure 2.6. Note that the string with the
name of the event must not include the prefix on.

 You can remove the handler added with $addHandler at any time by passing
the same arguments—the element, the event name, and the handler—to the
$removeHandler method. It’s a good practice to always dispose event handlers

Table 2.3 Shortcuts for common methods defined in the abstraction API

Shortcut Method Name Description

$get Sys.UI.DomElement.getElementById Returns a reference to a
DOM element

$addHandler Sys.UI.DomElement.addHandler Adds an event handler to
an event exposed by a DOM
element

$removeHandler Sys.UI.DomElement.removeHandler Removes an event handler
added with $addHan-
dler

$addHandlers Sys.UI.DomElement.addHandlers Adds multiple event han-
dlers to events exposed by
DOM elements and wraps
the handlers with delegates

$removeHandlers Sys.UI.DomElement.removeHandlers Removes all the handlers
added with $addHan-
dler and $addHan-
dlers

$addHandler(txtNoDigits, 'keypress', txtNoDigits_keypress);

Event handler

Event name

DOM element

Figure 2.6 Syntax for the $addHandler method, used for attaching
a handler to an event raised by a DOM element

52 CHAPTER 2

First steps with the Microsoft Ajax Library
added to DOM elements. You do so to prevent memory leaks in the browser that
could slow the application and cause a huge performance drop. As in listing 2.3, a
good place to use $removeHandler is in the pageUnload function, which is called
just before the browser unloads the web page.

 In the previous example, the handler for the text box’s keypress event is the
txtNoDigits_keypress function. The handler is called as soon as a key is pressed
in the text field. As you can see, the first argument passed to the txtNoDigits
_keypress function, evt, is an instance of the Sys.UI.DomEvent class. The main
characteristic of this object is that it contains the event data and exposes the same
properties in all the supported browsers.

NOTE The $addHandler method uses a private function to subscribe the event.
When the private handler is executed, the browser-specific event object is
converted into a Sys.UI.DomEvent instance. At this point, the original
event handler passed to $addHandler is called with the Sys.UI.Dom-
Event instance as an argument, in place of the original event object.

Among the various properties of the event object, charCode returns the code of
the typed character. The preventDefault method is invoked to avoid the execu-
tion of the default action for the subscribed event. In the example, this prevents
characters whose code corresponds to a digit from being displayed in the text
box. Table 2.4 lists all the properties of the cross-browser event object.

Table 2.4 Properties of the Sys.UI.DomEvent class, which provides a cross-browser object that
 contains the event data for DOM events

Property Value

rawEvent Underlying event-data object built by the current browser

shiftKey True if the Shift key was pressed

ctrlKey True if the Ctrl key was pressed

altKey True if the Alt key was pressed

button One of the values of the Sys.UI.MouseButton enumeration: leftButton, mid-
dleButton, rightButton

charCode Character code for the typed character

clientX During a mouse event, the x coordinate of the mouse location relative to the
client area of the page

clientY During a mouse event, the y coordinate of the mouse location relative to the
client area of the page

Working with the DOM 53
Changing the layout of DOM elements is one of the main tasks in dynamic HTML
pages. For example, features like animations, scrolls, and drag and drop rely on the
positioning and the style of DOM elements. Let’s return to the Sys.UI.DomElement
class to examine a group of methods related to CSS and positioning.

2.3.3 CSS and positioning

The Sys.UI.DomElement class provides a group of methods for performing com-
mon tasks related to CSS and positioning. If you pass a DOM element and a
string with the name of a CSS class to the addCssClass method, you add the class
to the list of CSS classes associated with an element. If you pass the same argu-
ments to the removeCssClass method, you remove the class from the list of asso-
ciated CSS classes.

 If there’s one thing that highlights the incompatibilities between the various
implementation of the DOM, it’s positioning. Due to the different ways in which
the many parameters related to the box model are computed, making a UI look
the same in multiple browsers can be a real challenge.

target Element that raised the event

screenX During a mouse event, the x coordinate of the mouse location relative to the
computer screen

screenY During a mouse event, the y coordinate of the mouse location relative to the
computer screen

type Name or type of the event (like click or mouseover)

preventDefault() Prevents execution of the default action associated with the event

stopPropagation() Prevents the event from propagating up to the element’s parent nodes

Table 2.4 Properties of the Sys.UI.DomEvent class, which provides a cross-browser object that
 contains the event data for DOM events (continued)

Property Value

The box model
The box model describes the layout of DOM elements in a web page through a
set of parameters implemented in CSS. You can read a good article about the
box model at http://www.brainjar.com/css/positioning/.

54 CHAPTER 2

First steps with the Microsoft Ajax Library
The Microsoft Ajax Library tries to mitigate this issue by providing methods that
take into account bugs and different algorithms for computing the position and
bounds of DOM elements. To retrieve the location of an element, you write a state-
ment like the following:

var location = Sys.UI.DomElement.getLocation(element);

The getLocation method takes a reference to a DOM element and returns an
object with two attributes, x and y, which store the left and top coordinates of the
element relative to the upper-left corner of the parent frame:

var top = location.y;
var left = location.x;

The setLocation method accepts the x and y coordinates (specified in pixels)
and sets the element’s position using the left and top attributes of its style
object. In this case, the element’s location is set based on the positioning mode of
the element and its parent node. Consider the following statement:

Sys.UI.DomElement.setLocation(element, 100, 100);

If the parent node of element has a specific positioning mode (for example, rel-
ative or absolute), then its location—by CSS rules—is set relative to the parent
element and not to the parent frame.

 If you need to know the bounds of an element—its location and its dimen-
sions—the Sys.UI.DomElement.getBounds method takes a reference to a DOM
element and returns an object with four attributes: x, y, height, and width.

 The main goal of the abstraction API isn’t to increase differences by adding a
new group of methods to learn and remember; the objective is to offer a consis-
tent programming interface to the browser’s DOM. When the Microsoft Ajax
Library evolves and adds support for new browsers, the code written with the API
will continue to work as before. This is possible because under the hood the
library takes care of all compatibility issues.

 It’s time to leave the abstraction API, but your work with the DOM isn’t over.
Handling DOM events is one of the most common tasks when scripting against a
web page. In the next sections, we’ll introduce two useful methods for implement-
ing callbacks and delegates in JavaScript. We’ll show how you can use them to make
DOM event-handling easy and straightforward.

2.3.4 Client delegates

Think of a button on an ASP.NET page or on a Windows Forms form. When the
user clicks the button, the Button object realizes this and raises a click event,
which implicitly means, “Hey, someone clicked me, but I’m just a Button. What

Working with the DOM 55
should happen now?” In the .NET framework, objects use a delegate to invoke one
or multiple methods responsible for processing the event.

NOTE To learn more about delegates in the .NET framework, browse to the fol-
lowing URL: http://msdn.microsoft.com/msdnmag/issues/01/04/net/.

To implement a similar pattern in JavaScript, the Microsoft Ajax Library provides
a method called Function.createDelegate, which accepts two arguments and
returns a new function—let’s call it the client delegate. The first argument is the
object that will be pointed to by this in the client delegate. The second argument
is the function that you want to invoke through the client delegate.

 When you invoke the client delegate, it calls the function you passed previ-
ously. The difference is that now, this points to the object you passed as the first
argument to createDelegate.

 To understand why a client delegate is useful, recall what happens when you
add a handler to an event raised by a DOM element. In the handler, this always
points to the element that hooked up the event, which determines the scope you
can access. Using a client delegate lets you access—through the this keyword—a
different object than the DOM element that hooked up the event.

 Listing 2.4 demonstrates how to use a client delegate to handle the click
event of a button element. In the event handler, you can access a variable stored
in a different scope.

<input type="button" id="testButton" value="Click Me" />

<script type="text/javascript">
<!--
 function pageLoad() {
 this.test = "I'm a test string!";

 var clickDelegate =
 Function.createDelegate(this, onButtonClick);

 $addHandler($get('testButton'), 'click', clickDelegate);
 }
 function onButtonClick() {
 alert(this.test);
 }
//-->
</script>

Listing 2.4 Using a client delegate to handle a DOM event

test property
of window
object

B

Create client
delegate

C

Handle click
event with

delegate

D

Access the
window objectE

http://msdn.microsoft.com/msdnmag/issues/01/04/net/

56 CHAPTER 2

First steps with the Microsoft Ajax Library
The C clickDelegate variable stores a client delegate that D invokes the onBut-
tonClick function. In the function, this points to the object passed as the first
argument to createDelegate. Because pageLoad is a global function, this points
to the global object, which will be accessible in the E onButtonClick function. To
demonstrate this, you alert the value of the B test variable, which was added to
the window object in the first statement of the pageLoad function. If you try to pass
the onButtonClick function—instead of the client delegate—to the $addHandler
method, you’ll notice that the test variable is undefined, because this now
points to the button element that raised the click event.

 The Function.createDelegate method is useful because you don’t have to
store in a global variable—or even in a DOM element—the context that you want
to access in the event handler. Plus, the Microsoft Ajax Library provides two meth-
ods for subscribing to multiple DOM events, creating delegates for them, and dis-
posing both the delegates and the handlers automatically. These methods are
accessed through the $addHandlers and $clearHandlers shortcuts.

2.3.5 $addHandlers and $clearHandlers

The main advantage of using $addHandlers and $clearHandlers is to avoid the
error-prone (and boring) job of creating client delegates, attaching handlers, and
then performing the reverse task, all multiplied by the number of events you’re
subscribing. For example, the following statement automatically creates the client
delegates for the click and mouseover events of a button element:

$addHandlers(buttonElement, { click:onButtonClick,
 mouseover:onMouseOver }, this);

The first argument passed to $addHandlers is the DOM element. The second
parameter is an object for which each property is the name of an event, and
whose value is the event handler. The last parameter is the owner of the handler,
which determines the context under which the event handler is executed. Usually
you pass this, which lets you access—in the handler—the object that subscribed
to the event.

 If you need to detach all the event handlers from the element, you can do so
with a single statement:

$clearHandlers(buttonElement);

Note that the $clearHandlers method detaches all the event handlers attached
with $addHandler and $addHandlers. It also disposes all the delegates created
with the $addHandlers method.

Working with the DOM 57
NOTE Browsers can leak memory if event handlers aren’t correctly detached
from DOM elements. For this reason, it’s important to always detach all
the event handlers and dispose all the delegates when a client object is
cleaned up or the whole page is unloaded.

You don’t always need to switch the scope of an event handler to access the infor-
mation you need. Often, it’s enough to access a context object where you’ve
stored only the references that may be useful during the processing of the event.
In this case, a better approach is to handle a DOM event using a callback function.

2.3.6 Callbacks

The Microsoft Ajax Library provides a method called Function.createCallback,
which you can use to create a callback function that an object can invoke at any time.
The main purpose of Function.createCallback is to call a function with a context
provided by the object that created the callback. The context is an object that, usu-
ally, contains application data that otherwise wouldn’t be accessible in the method,
because they belong to a different scope. Just like client delegates, callbacks are use-
ful for processing DOM events. The code in listing 2.5 shows how you can access, in
a DOM event handler, a custom object created in the pageLoad function.

<input type="button" id="myButton"
 value="Time elapsed since page load" />

<script type="text/javascript">
<!--
 function pageLoad() {
 var context = { date : new Date() };

 var clickCallback =
 Function.createCallback(onButtonClick, context);

 $addHandler($get('myButton'), 'click', clickCallback);
 }

 function onButtonClick(evt, context) {
 var loadTime = context.date;
 var elapsed = new Date() - loadTime;

 alert((elapsed / 1000) + ' seconds');
 }
//-->
</script>

Listing 2.5 Using a callback to handle a DOM event

context
object

B

Create
callback

C

Attach handler to click event D

Access event
object and
context

E

58 CHAPTER 2

First steps with the Microsoft Ajax Library
The B context variable stores the time at which the pageLoad function was
invoked. You want to access this information in the function that handles the but-
ton’s click event. To do that, you C create a callback that points to the onBut-
tonClick function. In the Function.createCallback method, you specify the
function to invoke and the context object. D Then, you pass the callback to the
$addHandler method. E When the onButtonClick function is called, the context
object is added to the list of arguments, just after the event object.

 Callbacks and delegates are nice additions to the set of features you can lever-
age when programming against the DOM with the Microsoft Ajax Library. But in
the Ajax age of web applications, interacting with the DOM is just a small portion
of the tasks the client code should accomplish. You need features and tools that
simplify everyday programming with JavaScript. In the following sections, we’ll
explore some of the classes that the Microsoft Ajax Library provides to increase
productivity on the client side.

2.4 Making development with JavaScript easier

Since the first versions of JavaScript, developers have started writing libraries to
leverage the base functionality provided by the language. Every new library or
framework that sees the light—and lately, this seems to happen on a monthly
basis—aims at increasing the productivity of JavaScript developers by offering a
set of tools that makes it easier to design, write, and debug the client code. As you
may have guessed, the direction taken by the Microsoft Ajax Library is to achieve
the same goals by bringing some of the .NET coding patterns to the client side.
Let’s look at some of the client classes provided by the library, starting with the
enhancements made to the built-in JavaScript objects. Later, we’ll talk about
browser detection and client-side debugging.

2.4.1 The String object

String manipulation is one of the most common tasks in everyday programming.
JavaScript comes with a String object that contains various methods for dealing
with strings. However, some frequently desired methods such as format and trim
aren’t in the list. The good news is that the Microsoft Ajax Library extends—at
runtime—the String object to make it more similar to the counterpart class in the
.NET framework. For example, one of the methods added to the client String
object is format. You can use numbered placeholders like {0} and {1} to format
strings using variables, just as you do on the server side:

alert(String.format("This code is running on {0} {1}",
 Sys.Browser.agent, Sys.Browser.version));

Making development with JavaScript easier 59
The Sys.Browser object can be used to get information about the browser that
loaded a page. We’ll return to browser detection in section 2.4.4. In the meantime,
look at table 2.5, which lists the new methods added to the JavaScript String object.

An object familiar to .NET developers is the string builder. A string builder is an
object that speeds up string concatenations because it uses an array to store the
parts instead of relying on temporary strings. As a consequence, a string builder is
orders of magnitude faster than the + operator when you need to concatenate a
large number of strings.

2.4.2 Sys.StringBuilder

The Sys.StringBuilder class closely resembles the System.Text.StringBuilder
class of the .NET framework. In JavaScript, it’s common to build large chunks of
HTML dynamically as strings and then use the innerHTML property of a DOM ele-
ment to parse the HTML. Even if it isn’t a standard DOM property, innerHTML is
orders of magnitude faster than the standard methods for manipulating the DOM
tree. Listing 2.6 shows how to use an instance of the Sys.StringBuilder class to
format the URL of a web page and display it on a label. Instances of client classes
are created with the new operator in the same way as JavaScript custom objects.
We’ll return to client classes and other object-oriented constructs in chapter 3.

Table 2.5 Methods added to the JavaScript String object

Method Description

endsWith Determines whether the end of the String object matches the specified string.

format Replaces each format item in a String object with the text equivalent of a corre-
sponding object's value.

localeFormat Replaces the format items in a String object with the text equivalent of a corre-
sponding object's value. The current culture is used to format dates and numbers.

startsWith Determines whether the start of the String object matches the specified string.

trim Removes leading and trailing white space from a String object instance.

trimEnd Removes trailing white space from a String object instance.

trimStart Removes leading white space from a String object instance.

60 CHAPTER 2

First steps with the Microsoft Ajax Library

<script type="text/javascript">
<!--
 function pageLoad(sender, e) {
 var sb = new Sys.StringBuilder();

 sb.append('<h3>You are now browsing: ');
 sb.append('<i>');
 sb.append(window.location);
 sb.append('</i></h3>');

 var myLabel = $get('urlLabel');

 urlLabel.innerHTML = sb.toString();
 }
//-->
</script>

To add the various parts to the final string, you pass them to the append method.
When you’re done, you call the toString method to get the whole string stored
in the StringBuilder instance. The Sys.StringBuilder class also supports an
appendLine method that adds a line break after the string passed as an argument.
The line break is the escape sequence \r\n, so you can’t use it when building
HTML. Instead, you write something like this:

sb.append('
');

You can use the isEmpty method to test whether a StringBuilder instance
doesn’t contain any text. The following if statement performs this check and, if
the StringBuilder isn’t empty, clears all the text using the clear method:

if(!sb.isEmpty()) {
 sb.clear();
}

When the number of strings to concatenate is larger, the string builder becomes an
essential object to avoid huge performance drops. The Sys.StringBuilder class
relies on an array to store the strings to concatenate. Then, it uses the join method
of the String object to perform the concatenation and obtain the final string.

 Arrays are probably one of the most used data structures in programming.
JavaScript provides a built-in Array object that the Microsoft Ajax Library extends
with methods commonly found in the .NET Array class.

Listing 2.6 Example using the Sys.StringBuilder class

Create instance of
StringBuilder

Inject HTML chunk
in span element

Making development with JavaScript easier 61
2.4.3 The Array object

In JavaScript, an array is an ordered collection of values that can be of different
types. The built-in Array object exposes many methods to deal with arrays, but the
Microsoft Ajax Library extends it so it looks and feels similar to the Array object of
the .NET framework. Table 2.6 lists the new methods added to the Array object,
together with their descriptions.

All the new methods added to the Array type act as static methods. As we’ll clarify
in chapter 3, one of the ways to extend an existing JavaScript object is to add a
method directly to its type. As a consequence, the new method can be called
directly on the type rather than on a new instance. This is similar to static meth-
ods in C# and shared functions in VB.NET; in practice, the usage is the same in
JavaScript. In listing 2.7, you create an array and play with some of the new meth-
ods introduced by the Microsoft Ajax Library.

Table 2.6 Extension methods added to the JavaScript Array object

Method Description

add Adds an element to the end of an Array object

addRange Copies all the elements of the specified array to the end of an Array object

clear Removes all elements from an Array object

clone Creates a shallow copy of an Array object

contains Determines whether an element is in an Array object

dequeue Removes the first element from an Array object

forEach Performs a specified action on each element of an Array object

indexOf Searches for the specified element of an Array object and returns its index

insert Inserts a value at the specified location in an Array object

parse Creates an Array object from a string representation

remove Removes the first occurrence of an element in an Array object

removeAt Removes an element at the specified location in an Array object

62 CHAPTER 2

First steps with the Microsoft Ajax Library
<script type="text/javascript">
<!--
 function pageLoad(sender, e) {
 var arr = new Array();

 Array.add(arr, 3);
 Array.addRange(arr, [4, 5, "Hello World!"]);

 Array.removeAt(arr, arr.length - 1);

 var sum = 0;
 Array.forEach(arr,
 function(item) { sum += item; });

 alert(sum);

 Array.clear(arr);
 }
//-->
</script>

The first thing that .NET developers may notice is that methods have familiar
names. The code in listing 2.7 could have been written using the standard meth-
ods of the built-in Array object. On the other hand, the Microsoft Ajax Library
combines or renames them to achieve, wherever possible, consistency between
server-side and client-side classes.

 As we said previously, the new methods added to the Array object are static. For
example, the addRange method is called as Array.addRange and accepts two argu-
ments: the array instance on which you’re working, and an array with the elements
you want to add to the instance. The reason for having static methods is that the
JavaScript for/in construct, if used to loop over the elements of an array, would
return any methods added to the Array object. This happens because the for/in
construct loops through the properties of a generic object. On the other hand,
static methods aren’t returned if you use for/in to loop over an array instance.

 An interesting new method is Array.forEach, which loops through an array
and processes each element with the function passed as the second argument.
The example uses Array.forEach with a simple function that computes the sum
of the integers in the array.

 Often, web applications have a much wider scope than a company’s intranet.
Many are websites that can be browsed by virtually any corner of the world. However,
different cultures have different ways to represent data such as dates, numbers, and

Listing 2.7 Some of the new methods added to the Array object

Add
items

Remove last
item

Compute
sum of items

Clear
array

Making development with JavaScript easier 63
currencies. It’s important for applications to be aware of these differences and take
globalization and localization into account.

2.4.4 Globalization

On the server side, ASP.NET does a great job at globalization by providing a group
of objects that store information about different cultures. For example, you can
rely on specific CultureInfo objects to set a culture for the web application. These
objects contain all the settings relative to a particular culture, such as date and
number formats.

 Such infrastructure isn’t available on the client side, where you usually have to
elaborate your custom strategy or, worse, renounce it to implement globalization.
Luckily, the Microsoft Ajax Library makes enabling globalization on the client
side a piece of cake. If you set the EnableScriptGlobalization property of the
ScriptManager control to true, the CultureInfo object relative to the current cul-
ture (set on the server side) is serialized using the JSON data format and then sent
to the browser at runtime.

 The serialized object is stored in the Sys.CultureInfo variable and contains two
child objects: InvariantCulture and CurrentCulture. These objects contain the set-
tings relative to the invariant culture and the current culture as set on the server
side. The serialized CultureInfo object is used in conjunction with a group of new
methods added to the Date and Number objects by the Microsoft Ajax Library.

 The Date object provides formatting capabilities and localized parsing. You can
format date instances by passing a format string to the format method, like so:

var date = new Date();
var formatString =
 Sys.CultureInfo.CurrentCulture.dateTimeFormat.LongDatePattern;

alert(date.format(formatString));

This code snippet uses the CurrentCulture object to obtain a standard format
string, but you could also use a custom format string.

NOTE If you need more information about standard and custom format strings
for date and numbers, visit http://msdn2.microsoft.com/en-us/library/
427bttx3.aspx and http://msdn2.microsoft.com/en-us/library/97x6twsz.
aspx.

The format method uses the Sys.CultureInfo.InvariantCulture object to produce
a string with the formatted date. If you want to use the CurrentCulture object,
you have to pass the format string to the formatLocale method:

alert(date.formatLocale(formatString));

http://msdn2.microsoft.com/en-us/library/427bttx3.aspx
http://msdn2.microsoft.com/en-us/library/427bttx3.aspx
http://msdn2.microsoft.com/en-us/library/427bttx3.aspx
http://msdn2.microsoft.com/en-us/library/97x6twsz.aspx
http://msdn2.microsoft.com/en-us/library/97x6twsz.aspx

64 CHAPTER 2

First steps with the Microsoft Ajax Library
Figure 2.7 shows how a Date instance is formatted in the Italian culture (it-IT).
Similar rules are used for parsing strings that contain date representations. The
Date.parseInvariant method parses a string representation of a date using the
InvariantCulture object. On the other hand, the Date.parseLocale method takes
advantage of the CurrentCulture object.

 The Number object has been extended with similar methods. You have format
and localeFormat methods to format Number instances using the invariant cul-
ture or the current culture, as set on the server side. Similarly, the parse and
parseLocale methods are responsible for parsing a string with a number repre-
sentation using the desired culture settings.

NOTE You can browse the MSDN documentation for globalization and localiza-
tion at http://msdn2.microsoft.com/en-us/library/c6zyy3s9.aspx.

In addition to globalization, the ASP.NET AJAX framework provides support for
localization. You can think of localization as the translation of a page into a partic-
ular culture: Client resources like JavaScript files and strings can now be localized
from the client, not just the server. Chapter 4 will walk you through how this
is attainable.

 Now that you know how to deal with the enhanced JavaScript object, let’s focus
on the common tasks performed in everyday programming with JavaScript. Since
web developers started scripting against web pages, browser detection has played
a major role, especially due to the incompatibilities in the JavaScript implementa-
tions of different browsers.

Figure 2.7
A Date instance can be
formatted using the current
culture as set in an ASP.NET
page on the server side.

http://msdn2.microsoft.com/en-us/library/c6zyy3s9.aspx
http://msdn2.microsoft.com/en-us/library/c6zyy3s9.aspx

Making development with JavaScript easier 65
2.4.5 Browser detection

The Microsoft Ajax Library extracts information about the browser that is render-
ing the page from the DOM’s navigator object. This information is stored in an
object called Sys.Browser, which you can use to perform browser detection on the
client side. To see browser detection in action, the code in listing 2.8 displays a
message with the name and the version of the detected browser.

<script type="text/javascript">
<!--
 function pageLoad(sender, e) {
 var browser = String.format("Your browser is {0} {1}",
 Sys.Browser.name, Sys.Browser.version);

 alert(browser);
 }
//-->
</script>

The name and agent properties of the Sys.Browser object contain the browser’s
name and the current version. Figure 2.8 shows how this information is displayed
in a message box in the Opera browser.

Listing 2.8 Using the Sys.Browser object to perform browser detection

Figure 2.8 You can use the Sys.Browser object to perform browser detection at runtime.

66 CHAPTER 2

First steps with the Microsoft Ajax Library
Sometimes it’s useful to take an action only if a particular browser is detected. In
this case, you can test against the object returned by Sys.Browser.agent. For exam-
ple, add the following statement in listing 2.8, after the call to the alert function:

if(Sys.Browser.agent == Sys.Browser.InternetExplorer) {
 alert('This message is displayed only on Internet Explorer!');
}

As you can easily verify, the message box in this code is displayed only in Internet
Explorer. You can also test the Sys.Browser.agent property against Sys.Brows-
er.Firefox, Sys.Browser.Opera, and Sys.Browser.Safari.

 Performing browser detection is a small step toward the goal of writing client
code that runs smoothly and behaves as expected in all the browsers you’re target-
ing. Ajax web applications have introduced the need to dedicate even more time
to debugging. The following sections will examine the tools available for debug-
ging JavaScript code. We’ll also discuss how the Microsoft Ajax Library can help
you improve your debugging experience and handle errors.

2.4.6 Debugging

Debugging JavaScript code has never been the most exciting experience for a web
developer. On one hand, browsers don’t have embedded debuggers and often
provide cryptic error messages that give no clue what went wrong. On the other
hand, JavaScript continues to lack a real development environment, and almost
all the debuggers are available as external tools. Given this situation, it shouldn’t
come as a surprise that one of the preferred debugging techniques has always
been displaying messages on screen by calling the alert function at the right time
in the code.

 The situation is slowly getting better. All the modern browsers have a JavaScript
console that logs client errors, and interesting tools are being developed. Among
these, Firebug for Firefox and Web Development Helper for Internet Explorer
have proven to be must-have tools for Ajax developers. These tools integrate with
the browser and let you inspect and debug web pages directly in the browser. The
next version of Visual Studio (codename “Orcas”) will provide a real development
environment for JavaScript, with features such as improved debugging and Intel-
liSense in script files. This book’s Resources section points you to the URLs where
you can download some of these tools. Also, Appendix B contains instructions on
how to install them, together with an overview of their features.

 The Microsoft Ajax Library offers support for code debugging through a class
called Sys.Debug. This class exposes methods for logging messages to the
browser’s console and dumping client objects. To log a message to the console,

Making development with JavaScript easier 67
you can call the Sys.Debug.trace method anywhere in the code, passing a string
with the message as an argument:

Sys.Debug.trace("I'm a debug message.");

You can also dump an object by passing it to the Sys.Debug.traceDump method.
An object dump displays all the properties of an object, together with their values,
and can be helpful during debugging. The following example logs to the console
the properties of the object returned by the getBounds method of the
Sys.UI.DomElement class:

Sys.Debug.traceDump(Sys.UI.DomElement.getBounds(document.body));

Figure 2.9 shows the logged messages in the Firebug console of the Firefox
browser. If you prefer to see the messages directly on the page area rather than in
the JavaScript console, declare a textarea element with an ID of TraceConsole,
like so:

<textarea id="TraceConsole" rows="30" cols="50"></textarea>

In this way, all messages passed to Sys.Debug.trace are displayed in the textarea
element.

 If you consider the two main tasks performed by Ajax applications—updating
portions of the page layout and performing data access in the background—it’s
clear that a relevant part of the application logic consists of sending asynchronous
HTTP requests to the server. For this reason, there’s an increasing need for Ajax
developers to monitor what happens during data transfers and to inspect the con-
tent of the requests and responses sent during the life of a web page.

Figure 2.9
Debug messages logged to the
Firebug console in Firefox

68 CHAPTER 2

First steps with the Microsoft Ajax Library
For example, a response that never arrives may suggest that you have problems
related to server availability or to network latency. On the other hand, receiving a
response with a status code of 500 indicates that something went wrong on the
server. In chapter 5, we’ll develop techniques for detecting errors during HTTP
transactions; but in some cases you need to inspect the headers or the payload of
a request or a response.

 HTTP debugging is provided by some of the tools recently available to Ajax
developers. Fiddler, Firebug for Firefox, and Web Development Helper for Inter-
net Explorer offer this kind of functionality. Figure 2.10 shows a request traced
using the Fiddler tool.

 Web Development Helper was developed by a member of the ASP.NET team and
provides specific functionality for inspecting the content of a response sent during
partial rendering. You’ll see this tool in action in chapter 7, where we’ll go under
the hood of the UpdatePanel control and the partial rendering mechanism.

Figure 2.10 Fiddler is a free tool that lets you debug HTTP traffic.

Making development with JavaScript easier 69
Appendix B contains walkthroughs for configuring these tools and getting them up
and running in a few minutes.

 We’ll end our discussion of debugging by returning to code. If debuggers do
their best to help developers spot errors, we should ask what we can do—as pro-
grammers—to make debugging code easier. A good practice is to always raise
meaningful and well-documented errors, as we’ll explain in the next section.

2.4.7 Typed errors

In the .NET framework, you can raise either built-in or custom errors by leverag-
ing the Exception class. For example, if you try to access an element beyond the
bounds of an array, an exception of type IndexOutOfBoundsException is thrown
at runtime. The purpose of this and the other typed exceptions is to carry infor-
mation about the errors that occur at runtime.

 To work with and detect exceptions, a programming language usually provides
a special construct. For example, C# and VB.NET let you wrap a portion of code in
a try-catch block. The catch block detects exceptions that are raised in the code
encapsulated in the try block.

 On the client side, JavaScript supports the try-catch construct and uses the
built-in Error object as the base type to provide information about errors that
occur at runtime. The Microsoft Ajax Library extends the Error object to make it
possible to create typed exceptions on the client side. For example, to signal that
a function lacks an implementation, you do the following:

function doSomething() {
 throw Error.notImplemented();
}

The notImplemented method throws a client exception that you can detect using a
try-catch block. In general, an error can be raised anywhere in the code using
the JavaScript throw keyword. To catch the error, you have to wrap the call to
doSomething with a try-catch block:

function pageLoad() {
 try {
 doSomething();
 }
 catch(e) {
 alert(e.message);

 Sys.Debug.traceDump(e);
 }
}

Dump error object
to console

70 CHAPTER 2

First steps with the Microsoft Ajax Library
Every Error object captured in a catch block has a message property that indi-
cates the nature of the error. Figure 2.11 shows the exception message displayed
with a call to the alert function. If you run the previous example with the
browser’s console opened, you can also see a dump of the Error object captured
in the catch block. Interestingly, the Error object also has a stack property that
returns a string with the stack trace.

 Note that, in the message box in figure 2.11, the error raised by calling
Error.notImplemented() is reported as an exception of type Sys.NotImplement-
edException. The information about the exception type is stored as a string in
the name property of the Error object. As a consequence, you can use the string
returned by the name property to identify a particular exception in a catch block,
as in the following code:

try {
 doSomething();
}
catch(e) {
 if(e.name == "Sys.NotImplementedException") {
 // Handle this particular exception.
 }
}

NOTE To browse the list of exception types defined by the Microsoft Ajax
Library, consult the official documentation topic at http://ajax.asp.net/
docs/ClientReference/Global/JavascriptTypeExtensions/ErrorType-
Ext/default.aspx.

You can create custom exception types using the Error.create method. This
method accepts two arguments: a string with the name of the exception type that
the custom error represents, and a custom object whose properties are added to the
Error object returned by Error.create. As a general rule, the custom object should
contain at least a name property with the name of the exception type. Listing 2.9
shows an example of a custom error type created with the Microsoft Ajax Library.

Figure 2.11
An exception message
displayed using typed errors

http://ajax.asp.net/docs/ClientReference/Global/JavascriptTypeExtensions/ErrorTypeExt/default.aspx
http://ajax.asp.net/docs/ClientReference/Global/JavascriptTypeExtensions/ErrorTypeExt/default.aspx

Making development with JavaScript easier 71
<script type="text/javascript">
<!--
 Error.myCustomError = Error.create('This is my custom exception
 message.',
 {
 name : 'Sys.MyCustomException',
 additionalInfo : 'Additional information about the error.'
 }
);

 function pageLoad() {
 try {
 throw Error.myCustomError;
 }
 catch(e) {
 Sys.Debug.traceDump(e);

 alert(e.name + '\r\n' + e.message +
 '\r\n' + e.additionalInfo);
 }
 }
//-->
</script>

This listing defines a Sys.MyCustomError exception by using the Error.create
method. The first argument passed to the method is the exception message. The
second argument is an object with two properties: name and additionalInfo. The
name property always contains a string with the exception type. The addition-
alInfo property is a custom property that should contain additional information
about the error. If you need to add more properties, you can do so by expanding
the object passed to the Error.create method.

 The method returns a new function that you store in the Error.myCustomEx-
ception property. This function raises the client exception. You call it in the
pageLoad function, in the try block. In the catch block, you access the Error
object and display the exception message in a message box onscreen. You dump
the contents of the Error object in the browser’s console. Note that you’re able to
access the additionalInfo property supplied in the custom object.

Listing 2.9 A custom error type created with the Error.create method

Custom properties
attached to error object

Dump error object
to console

Format
error info

72 CHAPTER 2

First steps with the Microsoft Ajax Library
2.5 Summary

The Microsoft Ajax Library isn’t just a library for performing Ajax requests.
Instead, it provides a full featured framework for easily writing complex JavaScript
applications. In this chapter, we have given a high-level overview of the library’s
features and explained the Application model, together with the concepts of cli-
ent components and client page lifecycle.

 One of the goals of the Microsoft Ajax Library is to make possible writing code
that runs without incompatibilities in all the supported browsers. We have
explored the compatibility layer, which is implemented with an abstraction API
that turns library calls into browser-specific calls. The abstraction API takes into
account DOM event handling, CSS, and positioning. Furthermore, the Microsoft
Ajax Library allows you to easily create callbacks and client delegates in order to
handle DOM events.

 The Microsoft Ajax Library extends the built-in JavaScript objects to make
them more similar to their .NET counterparts. The String object now offers for-
matting capabilities, and arrays can be easily manipulated. Furthermore, the Date
and Number objects are enhanced to support globalization and localization. The
library also provides a set of objects to perform common tasks in JavaScript appli-
cations, from fast string concatenations to browser detection and support
for debugging.

 In the next chapter, you will see how the Microsoft Ajax Library makes it easier
to program in JavaScript using object-oriented constructs such as classes, inter-
faces, and enumerations.

JavaScript for
 Ajax developers
In this chapter:
■ JavaScript basics
■ The JSON data format
■ Object-oriented patterns in JavaScript
■ Reflection on client objects
■ Exposing events in JavaScript objects
73

74 CHAPTER 3

JavaScript for Ajax developers
Established in 1995 and initially integrated into the Netscape Navigator browser,
JavaScript was capable of validating web-page user input without refreshing.
Microsoft later packaged its own version, JScript, in Internet Explorer 3.0. In the fol-
lowing years, the language evolved, and developers began using it in conjunction
with the Document Object Model (DOM) for Dynamic HTML pages. In 1998, the lan-
guage was standardized as ECMAScript to facilitate the release of different versions.

 Some JavaScript characteristics (weak typing, prototyping, the use of first-class
functions), although typical for functional languages, may scare a programmer
who works mostly with an object-oriented language like Java or C#. On the other
hand, JavaScript has been used effectively to write complex and extraordinary cli-
ent controls. You’ll soon discover why JavaScript is now the language of choice
among Ajax developers.

 This chapter will explain how the Microsoft Ajax Library enhances JavaScript’s
object-oriented model. In the first section, we’ll review some of the language’s
most important concepts, focusing on objects and functions. After an overview of
the JSON data format, we’ll study Microsoft Ajax Library’s enhanced type system.
By the end of the chapter, you’ll be able to write object-oriented code using Java-
Script, perform reflection, and expose events on client objects.

3.1 Working with objects

JavaScript is a true object-oriented language. The notion of an object in JavaScript
is different from that in object-oriented languages such as C# and VB.NET. Objects
in JavaScript aren’t instances of classes, because JavaScript doesn’t support the
notion of a class. Instead, you obtain the structure—or template—of an object by
manipulating a special, native object called the prototype, which you’ll encounter
in section 3.1.5.

 A JavaScript object is nothing more than a collection of name and value pairs
called properties. Usually, this kind of structure is also called a dictionary or an asso-
ciative array. JavaScript provides also an array data type, which is a collection of val-
ues of different types. A major role in the language is played by functions, which
are objects like dictionaries or arrays. Functions are probably the most powerful
objects provided by JavaScript; they’re responsible for its great power and flexibil-
ity. In the following sections, we’ll do an overview of objects, arrays, and functions,
which are the foundations of the JavaScript language.

Working with objects 75
3.1.1 Objects

To create a generic object, you can take two different approaches. First, you can
use the new operator in conjunction with the Object type, as in the following
code:

var book = new Object();

As you’ll discover in section 3.1.4, the new operator is useful when you want to cre-
ate custom objects using a function as a constructor. In the previous statement,
the new operator is syntactic sugar, because an object is usually created with an
object literal, like so:

var book = {};

The object literal {} represents a sort of empty object. We’ll discuss the various
JavaScript literals in detail in section 3.1.7. Once you’ve created an object, you can
take advantage of an important characteristic of the language: You can expand
objects at any time by adding new properties to them. This is different from what
happens in class-based languages such as C# and VB.NET, where the structure of
an object is specified in a class and instances can’t be modified at runtime.

 To add a property to an object, you need to access it and assign a value. You
can do this anywhere in the code, at any time. If the property doesn’t exist, it’s
automatically created at runtime. The following code shows how to add a property
called title to the book object you created before:

book.title = 'ASP.NET AJAX In Action';

As we said previously, objects in JavaScript are collections of name and value pairs.
To demonstrate, you can add a property to an object using an indexed notation,
as if you were accessing a collection such as an array or a hash table. The following
is another way to add a title property to the book object:

book['title'] = 'ASP.NET AJAX In Action';

You can loop over an object’s properties by using the for-in construct. This con-
struct is similar to the foreach construct of C#. For example, the following code
displays the name and values of the properties of the book object:

for(var property in book) {
 alert('Name: ' + property + ', Value: ' + book[property]);
}

In this code snippet, the property variable holds, at each iteration, a string with
the name of a property of the object. As result, book[property] returns the value
of that property. The name and value of each property are displayed using the
JavaScript’s alert function, which displays a string in a message box on screen.

76 CHAPTER 3

JavaScript for Ajax developers
 Values assigned to properties, such as strings, numbers, or Boolean values,
expose properties and methods that can be accessed at runtime. For example, the
value of the title property of the book object is of type String. It exposes meth-
ods such as toUpperCase, which converts a string to uppercase:

var stringToUpper = book.title.toUpperCase();
alert(stringToUpper);

Similar properties are exposed by the built-in Number and Boolean types, which
represent numbers and Boolean values, respectively.

 Next, we’ll examine one of the most used data structures: arrays.

NOTE You can find a quick reference to the JavaScript data types and their
properties and methods at http://www.w3schools.com/jsref/default.asp.

3.1.2 Arrays

Another fundamental and widely used data type is the array. In JavaScript, an
array is an ordered collection of values that can be of different types. You access
values by specifying their position in the array using classic indexed notation. As
with objects, you can create an array using two different approaches. The first is to
use the new operator in conjunction with the Array type:

var arr = new Array();

However, arrays are usually created with an array literal. The array literal [] repre-
sents an empty array, as in the following code:

var arr = [];

To add elements to an array, you can use indexed notation, just as you do to add
properties to JavaScript objects:

arr[0] = 'AJAX';
arr[1] = 3;
arr[2] = false;

var firstElement = arr[0];
alert(firstElement);

Playing with JavaScript arrays is like playing with arrays in the .NET framework.
But JavaScript arrays are more similar to generic lists in .NET 2.0: You can add new
elements to an array at any time. An array can also hold elements of different
types, such as strings, numbers, Boolean values, objects, and child arrays.

NOTE JavaScript arrays are sparse. That is, no space is allocated for unused
elements.

Access first
element of array

http://www.w3schools.com/jsref/default.asp
http://www.w3schools.com/jsref/default.asp

Working with objects 77
Now, let’s discuss what’s probably the most powerful object that JavaScript pro-
vides: the function. The ability to manipulate functions as objects lets you create
custom objects and simulate object-oriented constructs like classes, interfaces,
and enumerations.

3.1.3 Functions

When a language treats functions as objects, it’s said to support first-class func-
tions. This means functions can be instantiated, returned by other functions,
stored as elements of arrays, assigned to variables, and so on. A function repre-
sents a portion of executable code and, at first look, seems similar to a method of
an object in a classic object-oriented language such as Java, C#, or VB.NET.

 As an example, here’s the code for a function called add that returns the sum
of its arguments:

function add(a, b) {
 return a + b;
}

Because JavaScript is a loosely typed language, you don’t need to specify the type
of the arguments or the type of the returned value (if any). All the information
about types is inferred at runtime. As a consequence, if the arguments a and b
passed to the add function are numbers, the returned value is their sum. If, on the
other hand, a and b are strings, the result is the concatenation of the two strings.
If the arguments are of different types, strange things may happen, and an error
may be raised at runtime. In chapter 13, we’ll discuss a technique called parameter
validation, which the Microsoft Ajax Library uses to check that the arguments
passed to a function are of the expected types.

 First-class functions can be assigned to an object’s properties. The following
code creates a calculator object and then assigns two functions to the object’s add
and multiply properties:

var calculator = {};

calculator.add = function(a, b) {
 return a + b;
}

calculator.multiply = function(a, b) {
 return a * b;
}

As shown in this example, you can declare a function without specifying a name.
A function with no name is called an anonymous function. Interestingly, assigning

78 CHAPTER 3

JavaScript for Ajax developers
an anonymous function to a property lets you invoke it through the property
itself:

var sum = calculator.add(3, 5);
var product = calculator.multiply(3, 5);

Note that this code treats the add and multiply properties as if they were the
names of the functions they hold. Accessing a property that holds a function is
similar to invoking a method of an object. For this reason, a JavaScript function
stored in a property of an object is called a method.

 Let’s continue our discussion of JavaScript functions by introducing two
important topics. The first concerns the scope of a function: the context that you
can access inside it. The second is another powerful characteristic of functions:
the ability to bind them to an environment.

The scope of a function
In JavaScript, every function is executed as a method of an object. But which object?
A quick answer is, the object pointed to by the this keyword in the body of the func-
tion. This doesn’t seem strange; but life isn’t that easy. The original question is
somehow still unanswered. Which object is referenced by this in a function?

 Without going into too much detail, let’s determine which object is pointed
to by this in the three cases you’ll encounter most often when programming in
JavaScript:

■ A simple JavaScript function declared in the page is called a global function.
In the body of a global function, the this keyword references the global
object. In the HTML Document Object Model (DOM), the window property
of the global object is the global object itself. In a global function, this
points to the window object.

■ A function that handles a DOM event is called a DOM event handler.
In the body of an event handler, the this keyword references the DOM ele-
ment that hooked up the event. If you subscribe to the click event of a
button element, for example, the object pointed to by this in the event
handler is the button element. Again, if you have a div element with an
event handler for the click event, and a span element inside of that, click-
ing the span will make the click event bubble up. Even though the span
really triggered the event, this points to the div element to which the
event handler was attached.

sum
holds 8 product

holds 15

Working with objects 79
■ A function used in conjunction with the new operator is called a constructor.
In JavaScript, constructors are one of the preferred approaches to creating
custom objects, as we’ll discuss in section 3.1.4. In the body of a constructor,
the this keyword references the newly created instance. If the newly cre-
ated instance defines methods, the this keyword inside the methods points
to the instance itself.

Knowing which object is referenced by this in a function is fundamental in order
to determine which variables, objects, and properties you can access in the body
of the function. In chapter 2, we discussed client delegates, which make it possible
to change the object referenced by this in a function. To make things even more
interesting, JavaScript functions can be nested and even bound to a scope.

Closures
One of the characteristics of JavaScript functions is that they can be nested. This
means you can declare a function in another function. Consider the following
code:

function parent(arg) {
 var testVariable = "I am a test variable.";

 function child() {
 alert(arg + testVariable);
 }

 child();
}

This code defines a function called parent, which declares a local variable called
testVariable. In the parent function, you declare the child function. The
child function can access, in its body, the
testVariable and arg variables that are defined
outside its body. The last statement of the parent
function invokes the child function, which
should display the values of the variables in a
message box on screen. This is what happens if
you invoke the parent function this way:

parent("Yes, ");

Calling the parent function this way produces
the results shown in figure 3.1.

A child
function

Call child
function

Figure 3.1 Calling a parent function
that invokes a child function

80 CHAPTER 3

JavaScript for Ajax developers
What’s happening here? JavaScript functions are always bound to a scope, or an
environment. As a consequence, child functions can access the scope of the parent
function, including its local variables and the parameters passed to it. But the real,
powerful thing is that if you make the parent function return its child function, the
local variables continue to “live” outside the parent function. To demonstrate the
power of such a feature, let’s rewrite the parent function as shown in listing 3.1.

function parent(arg) {
 var testVariable = "I am a test variable.";

 function child() {
 alert(arg + testVariable);
 }

 return child;
}

This time, instead of invoking the child function, the parent function returns it.
The curious thing is that even when the parent function has returned, its local vari-
ables continue to exist and can be accessed in the child function. To verify this, you
have to call the parent function and then invoke the returned child function:

var child = parent("Yes ");

child();

Surprisingly, a child function can access the variables of the parent function even
if they were declared as local variables. The scope of the child function remains
bound to the local variables of its outer function. Whenever this happens, you can
proudly say that you’ve created a closure.

Listing 3.1 Creating a closure by returning an inner function

A child
function

Return child
function

Currying
In listing 3.1, the child function displays a message on screen using two param-
eters defined in the scope of the parent function: arg and testVariable. Nonetheless,
you can call the child function without supplying any parameters to it: You have
transformed a function that takes multiple parameters into a function that takes
fewer (zero in this case) parameters. This technique is known as currying.

Working with objects 81
Understanding closures and dealing with them can be difficult at first, because
the most used object-oriented languages don’t support them. But closures have
interesting applications; for example, the Function.createDelegate method
illustrated in chapter 2 in section 2.3.4 is an application of closures. If you pro-
gram in .NET using C# 2.0, then you may have heard of anonymous methods, which
can’t be called closures but that implement a similar technique.

NOTE If you want to know more about C# anonymous methods, browse to
http://msdn2.microsoft.com/en-us/library/0yw3tz5k.aspx.

So far, we’ve demonstrated that JavaScript functions are powerful objects, but you
can do much more. For example, you can use functions to create custom objects,
as you’ll see in the next section.

3.1.4 Creating custom objects

In section 3.1, you saw how JavaScript objects can be created as dictionaries with
name and value pairs. Each pair represents a property of the object and the value
of the property. This approach may be less comfortable for developers acquainted
with the mechanisms of class-based object-oriented languages. In such languages,
you typically specify the structure of an object in a class, and then you create
instances of the class using the new operator. If you want to use a similar approach
in JavaScript, it’s possible to define a function and use it in conjunction with the
new operator to create custom objects. In this case, the function is called the con-
structor, and it’s used to define the properties of the new object. Following this
approach, listing 3.2 shows how to declare the constructor for a Cat object.

function Cat() {
 this._name = '';
 this._age = 0;
}

A JavaScript function acts as a constructor when you use it together with the new
operator. The following statement creates a new object using the Cat function as
the constructor:

var cat = new Cat();

The new operator creates a new object and invokes the constructor. In the body of
the constructor, this points to the newly created object. For this reason, accessing
the properties of the this parameter in the Cat function is equivalent to adding

Listing 3.2 The constructor for a Cat object

http://msdn2.microsoft.com/en-us/library/0yw3tz5k.aspx
http://msdn2.microsoft.com/en-us/library/0yw3tz5k.aspx

82 CHAPTER 3

JavaScript for Ajax developers
properties to the new object. The use of the new operator causes the constructor to
implicitly return the newly created object. As result, the cat variable in the previous
statement holds an object with two properties: _name and _age.

Every JavaScript object has a property called prototype that returns a reference
to an internal object called the prototype. The prototype object plays a major role
in JavaScript because it’s used to define the template of an object and to imple-
ment inheritance.

3.1.5 The prototype object

In a JavaScript object, the purpose of the prototype object is to hold all the prop-
erties that will be inherited by all the instances. The prototype object defines the
structure of an object, in a manner similar to what is done with classes in many
object-oriented languages. In the previous section, you saw how a function—the
constructor—can be used to create custom objects and to add properties to the
instances. Listing 3.3 shows how you can use the constructor’s prototype object to
add additional properties and methods to instances.

function Cat() {
 this._name;
 this._age;
}
Cat.prototype.speak = function() {
 alert("Meeeeooow!");
}

Listing 3.3 Expanding the prototype object to define an object’s initial structure

A convention for private properties
Often, some properties of an object are prefixed with an underscore—as is the
case with _name and _age—to suggest that they should be considered private.
However, this remains a naming convention only because properties of objects
can’t have a private scope. Despite what happens in Java or C#, where you can
use the private modifier to prevent external objects from accessing a member of
a class, in JavaScript the properties of an object are always publicly accessible.
By using closures, you can treat local variables defined in a function as private
members. But the convention offers a number of advantages, including the ability
to inspect members from a debugger.

Working with objects 83
In listing 3.3, you access the prototype of the Cat function and add a speak
method. The speak method calls the alert function to display a string with the
voice of a (hungry) cat. What are the consequences of adding a method to the
prototype object of the constructor? First, whenever you create an object with the
new operator and the Cat constructor, the new instance inherits the speak
method, as shown in the following code:

var cat = new Cat();
cat.speak();

Second, all references to objects and arrays added to the prototype object are
shared between all the instances.

TIP Never store objects or arrays in the prototype object, unless you want to
share them across all instances. Instead, store references to objects or
arrays in the constructor. This way, each instance has its own copy of
the object.

Adding methods to the prototype object is safe, because you’re sharing the same
function objects between different instances. This can yield some advantages in
terms of memory used to store multiple instances, because you’re sharing the
same function objects. But accessing functions in the prototype is slightly slower
than accessing them in the constructor, because they’re searched first in the cur-
rent instance and then in the prototype. A common approach is to declare mem-
bers in the constructor and methods in the prototype object; this is the approach
we’ll follow in this book.

 Now that we’ve introduced the prototype object, we’ll examine object extensi-
bility. In the next section, we’ll recap the most common ways of adding properties
to JavaScript objects.

3.1.6 Extending a JavaScript type

In the previous sections, we explained how to add properties to objects. JavaScript’s
dynamic features let you add a property to an object at any time by accessing a non-
existent property and assigning it a value, as shown in the following code:

var book = {};
book.title = 'ASP.NET AJAX in Action';
book.publisher = 'Manning';

In addition, you can extend instances of the built-in types by adding new proper-
ties to them. For example, you could expand an object of type String as follows:

var str = new String();
str.createdOn = new Date();

84 CHAPTER 3

JavaScript for Ajax developers
In this code, treating the String type as a constructor returns an object of type
String. You add a createdOn property that returns a Date object containing the
date when the string was created.

 A second way to add a property to an object is to do so before an instance is
created. You can do this using a constructor and its prototype object, as we
explained in sections 3.1.4 and 3.1.5. For example, the following code shows how
to define an object with two properties x and y, using a Point constructor:

function Point() {
 this.x = 0;
 this.y = 0;
}
Point.prototype.setLocation = function(x, y) {
 this.x = x;
 this.y = y;
}

By using the Point constructor in conjunction with the new operator, you get back
an object with the properties and methods defined in the constructor and in the
prototype object:

var p = new Point();
p.setLocation(3, 6);

Usually, properties of objects are accessed through instances. Sometimes, though,
it’s desirable to access methods through the type rather than through an instance,
as you do with static or shared methods in C# and VB.NET. Creating static methods
in JavaScript is easy because you add a property to the type or the constructor, as
in the following example:

Date.now = function() {
 return new Date();
}

Here, you extend the built-in Date object with a now method that you can use to
retrieve the current date and time. The now method is invoked directly on the
Date type rather than on an instance:

var dateTime = Date.now();

You encountered static JavaScript methods when we talked about the extended
Array object in chapter 2. Now, we’ll introduce literals, which are notations for
representing values. In JavaScript, you can use literals to represent nearly every
data type, including objects, arrays, and functions. Having a good knowledge of
JavaScript literals will enable you to write compact, elegant, fast code.

Working with objects 85
3.1.7 Literals

In programming languages, a literal is a notation for representing a value. For
example, "Hello, World!" represents a string literal in many languages, including
JavaScript. Other examples of JavaScript literals are 5, true, false, and null, which
represent an integer, the two Boolean values, and the absence of an object, respec-
tively. JavaScript also supports literals for objects and arrays and lets you create
them using a compact and readable notation. Consider the following statements
which create an object with two properties called firstName and lastName:

var customer = new Object();
customer.firstName = 'John';
customer.lastName = 'Doe';

An equivalent way of creating a similar object is

var customer = { firstName: 'John', lastName: 'Doe' };

The right part of the assignment is an object literal. An object literal is a comma-
separated list of name and value pairs enclosed in curly braces. Each pair repre-
sents a property of the object, and the two parts are separated by a colon. To cre-
ate an array, you can create an instance of the Array object:

var somePrimes = new Array();
somePrimes.push(1, 2, 3, 5, 7);

But the preferred approach is to use an array literal, which is a comma-separated
list of values enclosed in square braces:

var somePrimes = [1, 2, 3, 5, 7];

The previous examples demonstrate that object and array literals can contain
other literals. Here is a more complex example:

var team = {
 name:'',
 members:[],
 count:function() { return members.length }
}

The object assigned to the team variable has three properties: name, members, and
count. Note that '' represents the empty string, and [] is an empty array. Even
the value of the count property is a literal—a function literal:

function() { return members.length }

A function literal is constructed with the function keyword followed by an
optional name and the list of arguments. Then comes the body of the function,
enclosed in curly braces.

86 CHAPTER 3

JavaScript for Ajax developers
 Having covered literals, we can now introduce JavaScript Object Notation
(JSON), a notation that’s used to describe objects and arrays and that consists of a
subset of JavaScript literals. JSON is becoming popular among Ajax developers
because it can be used as a format for exchanging data, often in place of XML.

3.2 Working with JSON

JSON is a textual data-interchange format. Its purpose is to offer a representation
of structured data that is independent of the language or platform used. This
makes it possible to interchange data between applications written in different
languages and run the applications on different machines. Compared to XML,
which is probably the best-known data-interchange format, JSON has a compact
syntax. This means that often, less bandwidth is required to transmit JSON data
through a network.

 JSON is based on a subset of the JavaScript language. As a consequence, encod-
ing and parsing are nearly immediate. Because the majority of Ajax developers
are also JavaScript developers, there’s almost no learning curve.

3.2.1 JSON structures

JSON is built on two structures: a collection of name and value pairs, called an
object; and an ordered list of values, called an array. In JSON, a value can be one of
the following:

■ An object
■ An array
■ A number
■ A string
■ true
■ false

■ null

An object is represented by a JavaScript object literal, and an array is represented
by a JavaScript array literal. The remaining values are represented by the corre-
sponding literals.

 Because JSON is a subset of JavaScript literals, there are some restrictions on the
syntax. In a JSON object, the name part of a name/value pair must be a string, and
the value part must be one of the supported values. The following is the JSON rep-
resentation of an object with two properties:

{ "firstName":"John", "lastName":"Doe" }

Working with JSON 87
The names of the properties (firstName and lastName) must be strings and must
be enclosed in double quotes. Compare the previous code with the following,
which represents a similar object:

{ firstName: "John", lastName: "Doe" }

In JavaScript, both the objects have the same structure. However, the second
object isn’t a valid JSON representation, because the names of the properties
aren’t enclosed in double quotes.

 Restrictions also apply to JSON arrays, where elements must be supported val-
ues. For example, a Date object isn’t in the list of supported values and therefore
can’t be an element of a JSON array or a property of a JSON object. A String has
the same representation as a JavaScript string literal, except that strings must
always be enclosed in double quotes. Numbers are similar to JavaScript number
literals, but octal and hexadecimal formats aren’t supported. Here is an example
of a JSON array:

[1, 2, 3, 5, 7]

The Boolean values true and false, as well as null, have the same representation
as the corresponding JavaScript literals.

NOTE Methods can’t be represented using JSON, because function literals
aren’t part of its syntax. Furthermore, the JavaScript new operator isn’t
part of the JSON syntax and can’t be used in objects or arrays.

 One of the advantages of JSON is that it’s easy to parse. Many JSON parsers,
written for numerous languages, have been developed to automate the process of
generating and parsing JSON. (A list is available at the official JSON site, http://
json.org.) In JavaScript, the parsing process is immediate: All you have to do is
pass the JSON string to the JavaScript eval function. If you have a jsonString
variable that contains the JSON data, the following code parses it and returns the
corresponding JavaScript object:

var parsedJson = eval('(' + jsonString + ')');

Note that you should enclose the JSON data in parentheses before calling eval. By
doing this, you force eval to consider the argument an expression, and an object
literal {} won’t be interpreted as a code block. But the eval function can execute
arbitrary code, which can lead to security issues if the data come from an
untrusted source. For this reason, it’s always recommended that you validate the
JSON data before calling the eval function.

NOTE The official JSON site, http://json.org, provides a regular expression for
validating JSON data. You can find it in the JavaScript implementation
downloadable from the website.

http://json.org
http://json.org
http://json.org
http://json.org
http://json.org

88 CHAPTER 3

JavaScript for Ajax developers
The Microsoft Ajax Library has its own JavaScriptSerializer object, contained in
the Sys.Serialization namespace, which is responsible for encoding and
decoding JSON data. Let’s see how it works.

3.2.2 JSON and the Microsoft Ajax Library

The Microsoft Ajax Library provides the Sys.Serialization.JavaScriptSerializer object
in order to encode and decode JSON. This object exposes two methods called seri-
alize and deserialize. The serialize method accepts a JavaScript object as an
argument and returns a string with the corresponding JSON representation:

var customer = {firstName: 'John', lastName: 'Doe'};
var serializer = Sys.Serialization.JavaScriptSerializer;
var json = serializer.serialize(customer);

The json variable in this code holds a string with the JSON representation of the
object stored in the customer variable. The deserialize method performs the
inverse job. It takes a JSON string and returns the corresponding JavaScript object:

var customer = serializer.deserialize(json);

When you’re dealing with a JSON parser, be aware of how dates are represented.
JavaScript doesn’t support a date literal. And expressions like new Date() can’t be
embedded in a JSON object because the new keyword isn’t part of the protocol syn-
tax. As a consequence, parsers need to establish a convention about how dates
and times are represented.

 You can represent a date by using a string or a number. For example, you could
use the ISO 8601 format for date strings and the UTC format to represent a date as
a number. In the UTC format, you specify the number of milliseconds elapsed from
midnight January 1, 1970 (UTC). In some situations, however, these conventions
aren’t enough to disambiguate between a date representation and a simple string
or number. For example, how can you tell if 1169125740 should be interpreted as
a simple number or as the representation of the date January 18, 2007, 13:09:00 AM?

 The JavaScriptSerializer object provides a different, custom mechanism for
parsing dates, which are represented using a string similar to the following:

\/Date(1169125740)\/

In this string, the number is the number of milliseconds since UTC. The \/ char-
acters at the beginning and the end of the string are two escaped forward-slashes.
Because JSON supports the backslash (\) as the escape character, the string is equiv-
alent to /Date(62831853854)/. However, when the JavaScriptSerializer object
detects the escape backslash, it recognizes the string as a date representation and
instantiates the corresponding Date object. If you wrote the same string without the

Classes in JavaScript 89
backslashes, it would be interpreted as a simple string instead of a date. This makes
JSON strings fully compatible with the specification and with any deserializer, while
allowing you to reliably pass dates with serializers that know this convention.

 You’ll encounter JSON again in chapter 5, which is dedicated to the communi-
cation layer of the Microsoft Ajax Library. Now, it’s time to discuss the use of
object-oriented constructs like classes, interfaces, and enumerations in JavaScript.
In the following sections, we’ll explain how the Microsoft Ajax Library leverages
the object model provided by JavaScript. The goal is to make it easy and straight-
forward to write object-oriented client code.

3.3 Classes in JavaScript

The Microsoft Ajax Library leverages the JavaScript type system to simulate object-
oriented constructs not currently supported by JavaScript. Such constructs
include classes, properties, interfaces, and enumerations. The idea is to use the
dynamic capabilities of the language to extend the Function object and store
additional information related to a particular type. Adding information to a func-
tion object makes it possible to treat constructors as classes and, as you’ll see later,
to easily implement interfaces and inheritance. This enhanced type system offers
the possibility to perform reflection on client types.

3.3.1 Client classes

In this section, we’ll discuss how the Microsoft Ajax Library upgrades a JavaScript
constructor to a client class. Throughout the book, we’ll use the term client class to
refer to a class created in JavaScript with the Microsoft Ajax Library. From a devel-
oper’s point of view, the process is straightforward: All you have to do is add a sin-
gle statement after the declaration of the constructor. Listing 3.4 illustrates this
concept by showing how to create a Pet class starting from a Pet constructor.

function Pet() {
 this._name;
 this._age;
}
Pet.prototype = {
 speak : function() {
 throw Error.notImplemented();
 }
}
Pet.registerClass('Pet');

Listing 3.4 A Pet class defined with the Microsoft Ajax Library

90 CHAPTER 3

JavaScript for Ajax developers
The last statement in listing 3.4 contains a call to the registerClass method. As
we’ll discuss shortly, this method is responsible for setting up the constructor to
make it behave as a class.

 To recap, defining a client class is a three-step process:

1 Declare the constructor, which declares the fields of the class.

2 Fill the prototype object, which defines methods of the class.

3 Add a call to registerClass, which upgrades the constructor to a client
class.

The registerClass method alone has the power to transform a simple JavaScript
function into a client class. For this reason, it deserves some more attention.

3.3.2 The registerClass method

As shown in listing 3.4, the call to registerClass is the only thing you have to add
to a classic JavaScript function to make the Microsoft Ajax Library recognize it as a
class. This method accomplishes three important tasks:

■ Registers the type name in the constructor
■ Lets you specify a base class and takes care of automatically resolving the

inheritance relationship
■ Accepts one or multiple interface types that the client class will implement

You store the type name in the constructor so you can access this information at
runtime. As you’ll see in a moment, you usually declare classes by assigning an
anonymous function to a namespaced variable. By doing so, there’s no way to pro-
grammatically know the name of the variable and thus know the fully qualified
type name. This is why you need to register the type name by storing it as a string in
the constructor.

 Figure 3.2 shows how the Sys._Application class—whose single instance is
the Application object—is registered in the MicrosoftAJAX.debug.js file.

Sys._Application.registerClass('Sys._Application', Sys.Component, Sys.IContainer);

Base classFully qualified name
of the class

Interface

Figure 3.2 How the Sys._Application class is registered using the registerClass
method. The class-registration process also lets you specify a parent class and the interfaces
implemented by the class.

Classes in JavaScript 91
The figure shows the complete syntax for the registerClass method, which is
called as a static method of the function you’ll register as a class. Because the class
can belong to a client namespace, you must pass a string with the fully qualified
name of the class. This is the name of the class prefixed by the name of the con-
taining namespace. In figure 3.2, Sys is the namespace that contains the
_Application class. We’ll discuss client namespaces in section 3.3.4.

 The second argument is a reference to the base class. In the Microsoft Ajax
Library, a client class can have a single parent class. The advantage of specifying a
base class in the call to registerClass is that you avoid writing the code needed
to resolve the inheritance relationship. Instead, the library takes care of configur-
ing instances of child classes automatically on your behalf.

 The subsequent arguments specify the list of interfaces implemented by the
class. In figure 3.2, the _Application class implements a single interface called
Sys.IContainer. In general, a client class can implement multiple interfaces.

Once you create a class, you can take advantage of the other object-oriented con-
structs provided by the Microsoft Ajax Library. For example, you can expose the
values of private fields through client properties.

3.3.3 Properties

In this section, we’ll explain how to expose properties in JavaScript objects. In this
case, the term property doesn’t refer to the properties of objects, as discussed in
previous sections. Instead, we’ll talk about methods that let you read and write the
values of class fields. In object-oriented languages, it’s a good practice to expose
the values of private members through methods that enable you to read or write
them. A method used to read a value is called an accessor, and a method used to
write a value is called mutator. A class can selectively expose the values of its mem-
bers and prevent an external object from directly accessing them. Also, by using

How does it work?
Because calls to registerClass are contained outside of any functions, they’re ex-
ecuted by the client runtime when the code is parsed. As part of the registration
process, various pieces of information are stored in the constructor. In debug
mode, checks are performed to ensure that you’re providing valid references to
the base class and the interface types, and that you aren’t registering the same
class twice. Finally, the new type is tracked by adding it to an internal collection
stored in the Sys object. This completes the registration process for a client class.

92 CHAPTER 3

JavaScript for Ajax developers
accessors and mutators, code can perform additional logic before returning or
storing a value.

NOTE In languages such as C# and VB.NET, this mechanism is available as a built-
in construct called a property. A property is usually made with a getter (the
block of logic used to read a value) and a setter (the block of logic used to
write a value), but you can also have read-only and write-only properties.

In JavaScript, it’s not possible to define a private scope for an object’s fields. It may
seem useless to rely on methods for reading and writing their values. But you can
still use methods to perform additional logic, such as validation. The Microsoft
Ajax Library defines a naming convention for declaring properties of a client class:

■ A getter is a method whose name is prefixed by get_, as in get_name.
■ A setter is a method whose name is prefixed by set_, as in set_name.

Following this convention, get_name and set_name are the methods used for
reading and writing the value of the _name member.

TIP The Microsoft Ajax Library relies on properties to perform many tasks
such as configuring components and parsing XML Script code. We’ll talk
about the client component model in chapter 8 and about the XML
Script declarative language in chapter 11. We recommend that you
always use properties to expose the values of class fields.

Listing 3.5 shows how to expose the values of the _name and _age members
through two properties called name and age in the Pet class. Note that the setters
(set_name and set_age) accept the value to store as an argument. In the
set_age method, you also check that the value passed is an integer and ensure
that it’s always greater than or equal to zero.

function Pet() {
 this._name = '';
 this._age = 0;
}
Pet.prototype = {
 speak : function() {
 throw Error.notImplemented();
 },

 get_name : function() {
 return this._name;
 },

Listing 3.5 The Pet class with two properties

Getter

Classes in JavaScript 93

 set_name : function(value) {
 this._name = value;
 },

 get_age : function() {
 return this._age;
 },

 set_age : function(value) {
 if(isNaN(value) || value < 0) {
 throw Error.argument('age');
 }

 this._age = 0;
 }
}
Pet.registerClass('Pet');

So far, you know how to create client classes and how to expose client properties.
In the .NET framework, namespaces are used as containers of classes in order to
minimize name conflicts. JavaScript doesn’t support namespaces, but you can sim-
ulate them using objects. Let’s see how you can create namespaces in JavaScript
using the Microsoft Ajax Library.

3.3.4 Namespaces

A namespace is a container of classes. Its main purpose is to let you group classes in
a logical and functional manner and even create classes with the same name, as
long as they’re contained in different namespaces. This is useful when you’re
attempting to avoid function name collisions from multiple script files. For exam-
ple, an Ajax application may take advantage of multiple Ajax frameworks, and this
increases the risk of name collisions. Or an application may need to download
script files from different locations on the Internet, each with its own naming con-
ventions; thus, conflicts are more likely to arise. JavaScript doesn’t support a
namespace construct yet, but you can use objects to define a particular scope. For
example, suppose you’ve defined an empty object named Samples. Let’s expand
the Samples object by adding a method to it:

var Samples = {};

Samples.Pet = function() {
 this._name = '';
 this._age = 0;
}

Setter

94 CHAPTER 3

JavaScript for Ajax developers
This code assigns a constructor to the Pet property of the Samples object. The
Samples object defines a new scope and can be seen as the containing namespace
for the Pet constructor. You’ve assigned the constructor to the namespaced variable
Samples.Pet. By turning the constructor into a client class, the name of the
namespaced variable that holds the constructor becomes the fully qualified name
of the class.

 The Microsoft Ajax Library leverages the same pattern to simulate
namespaces. The only difference is that you can take advantage of the Type.reg-
isterNamespace method to create a namespace automatically:

Type.registerNamespace('Samples');

To create a child namespace, you have to append its name to the parent
namespace. The library takes care of creating the corresponding child object and
also the parents, if they don’t already exist:

Type.registerNamespace('Samples.ChildSpace');

NOTE The Microsoft Ajax Library defines Type as a simple alias for Function.

You create a class in a namespace by assigning the constructor to a namespaced
variable and then registering the constructor with the registerClass method.
This procedure is shown in listing 3.6, in which the Pet class is declared in the
Samples namespace. The namespace registration must always precede the decla-
ration of any child class.

Type.registerNamespace('Samples');

Samples.Pet = function() {
 // Class fields.
}
Samples.Pet.prototype = {
 // Class methods.
}
Samples.Pet.registerClass('Samples.Pet');

With classes, properties, and namespaces, writing object-oriented code in Java-
Script is becoming similar to writing code in languages such as C# and VB.NET.
Now, we’re ready to explore one of the main features of object-oriented lan-
guages: inheritance.

Listing 3.6 Declaring a class in a namespace

Understanding inheritance 95
3.4 Understanding inheritance

In object-oriented languages such as Java, C#, and VB.NET, inheritance is class-
based. This means you can make a child class inherit all its public and protected
members from a parent class. In JavaScript, things work differently because you
don’t have classes. Inheritance is prototype-based, because properties and methods
are usually inherited from the prototype object. In the following sections, we’ll do
a quick overview of prototype-based inheritance. Then, we’ll explain how you can
easily implement inheritance in JavaScript using the Microsoft Ajax Library.

3.4.1 Prototype-based inheritance

In a prototype-based language like JavaScript,
objects inherit all the properties defined in the
prototype object. Let’s return for a moment on
the Cat constructor defined in listing 3.3. The
Cat constructor is an object of type Function
that, following the principle, inherits all the
properties defined in the prototype object of the
Function object. In turn, Function inherits all
the properties defined in the prototype of
Object, which is the root type of all the JavaScript
objects. The final result is that every object cre-
ated using the Cat constructor will inherit the
properties defined in the Function and Object
prototypes, as illustrated in figure 3.3. The mech-
anism is similar to that of class-based inheritance; the main difference is that instead
of having a chain of classes in parent-child relationship, you have a prototype chain.

 In JavaScript, implementing inheritance is simple; but it’s done differently than
in class-based languages, where the parent class can be specified in the class decla-
ration. For example, one approach is to assign the object returned by the parent
constructor to the prototype object of the child constructor. Without going into
too much detail, the code in listing 3.7 shows how you can define a Cat object that
inherits all the properties from a Pet object using prototype-based inheritance.

function Pet() {
 this._name;
 this._age;
}
Pet.prototype = {

Listing 3.7 An example of prototype-based inheritance in JavaScript

Object.prototype

Function.prototype

Cat.prototype

Figure 3.3 Inheritance in JavaScript
is prototype-based. An object inherits
all the properties defined in the
prototype of the parent objects.

96 CHAPTER 3

JavaScript for Ajax developers
 speak : function() {
 throw Error("This method should be
 ➥overridden by derived classes.");
 }
}

function Cat() {

 Pet.call(this);
}
Cat.prototype = new Pet();

Cat.prototype.speak = function() {
 return "Meeeeooow!";
}

To create a Cat object that inherits from Pet, you perform three steps:

1 Inherit the properties defined in the Pet constructor by invoking the Pet
constructor in the Cat constructor.

2 Inherit the properties defined in the prototype of Pet by assigning a new
instance of Pet to the Cat prototype.

3 Override the inherited speak method by declaring a method with the same
name in the Cat prototype. Note that this step isn’t mandatory: It provides a
meaningful implementation of the speak method in the Cat constructor.

You can run the following code to ensure that Cat has effectively inherited all the
properties from Pet:

var cat = new Cat();
cat.speak();

If you use the Microsoft Ajax Library, you have to specify the name of the base
class when calling the registerClass method on the child class. Listing 3.8 shows
how to define a Cat class that derives from Pet, using the Microsoft Ajax Library.

Type.registerNamespace('Samples');

Samples.Cat = function() {

 Samples.Cat.initializeBase(this);
}
Samples.Cat.prototype = {

Listing 3.8 Deriving from a base class with the Microsoft Ajax Library

Call base class’s
constructor

Inherit properties
defined in prototype

Override
speak method

Resolve inheritance and
call base constructor

Understanding inheritance 97

 speak : function() {
 alert('Meeeeooow!');
 }
}
Samples.Cat.registerClass('Samples.Cat', Samples.Pet);

The reference to the base class is passed as
the second argument to the register-
Class method. When you derive from a
base class, you must remember to invoke
the initializeBase method in the con-
structor of the child class. The initiali-
zeBase method is always called on the
child class with the this keyword as an
argument. As shown in figure 3.4, the ini-
tializeBase method is responsible for
walking the inheritance chain until the
child class has inherited all the properties
from the parent class and its ancestors.

 Typically, when dealing with inherit-
ance, you need to perform common tasks
such as passing arguments to the base
class’s constructor and overriding methods inherited by the base class. Let’s see
how to perform these tasks with the help of the Microsoft Ajax Library.

3.4.2 Passing arguments to the base class

To pass arguments to the constructor of the base class, you have to pass them to
the initializeBase method. Let’s rewrite the constructor of the Pet class to
accept the values of the _name and _age members as arguments:

Samples.Pet = function(name, age) {
 this._name = name;
 this._age = age;
}

If you want to pass these arguments from the Cat class to the base Pet class, you
add them to an array and pass it as the second argument to the initializeBase
method. This process is illustrated in listing 3.9, where the constructor of the Cat
class is rewritten to accept the same arguments as the Pet constructor.

Override
speak method

Derived class

Base class
prototype, .ctor

Base class
prototype, .ctor

Figure 3.4 In the Microsoft Ajax Library,
inheritance is resolved by making a child class
inherit all the properties defined in the
prototype object and in the constructor of the
ancestor classes.

98 CHAPTER 3

JavaScript for Ajax developers
Samples.Cat = function(name, age) {

 Samples.Cat.initializeBase(this, [name, age]);
}
Samples.Cat.registerClass('Samples.Cat', Samples.Pet);

At this point, an instance of the Cat class can be created as follows:

var cat = new Cat('Kitty', 1);

This statement creates an instance of the Cat class and sets the _name and _age
members, inherited from the base Pet class, to Kitty and 1, respectively.

 Object-oriented languages let you redefine the implementation of a method
inherited from a parent class. When you redefine the implementation of an inher-
ited method, you create an override. For example, in listing 3.7, you override, in
the Cat class, the speak method inherited from the base class. In this case, invok-
ing the speak method from an instance of the Cat class no longer throws a client
exception, because the new function replaces the one inherited from the Pet
class. Let’s see how you can override a base method and call the base class’s imple-
mentation using the Microsoft Ajax Library.

3.4.3 Overrides

In JavaScript, you can override a method by assigning a new function to the same
property: You replace the previous function with the new one. This raises an inter-
esting question: If you’re deriving from a base class, how can you call the imple-
mentation of the base class if you’re replacing it? The answer is that you should
store a reference to the base method before replacing it in the child class. The
good news is that this is done automatically when you implement inheritance
using the Microsoft Ajax Library. Base methods can be invoked through a method
named callBaseMethod. Listing 3.10 shows how you can invoke the Pet imple-
mentation of the speak method from the child Cat class.

Samples.Cat.prototype = {
 speak : function() {
 Samples.Cat.callBaseMethod(this, 'speak');
 }
}

Listing 3.9 How to pass arguments to the constructor of the base class

Listing 3.10 Calling the implementation of a method defined in the base class

Pass name and
age arguments
to base class

Understanding interfaces and enumerations 99
The first argument accepted by callBaseMethod is always the current instance,
pointed to by this. The second argument is a string with the name of the method
to invoke on the base class. In this case, because the base implementation of the
speak method was defined in listing 3.4 to throw a client exception, the overrid-
den method will behave in the same manner as the base method and throw the
same client exception. If the base method accepts parameters, you encapsulate
them into an array and pass it as the third argument to callBaseMethod, as shown
in figure 3.5.

 We’re almost at the end of our journey through the object-oriented constructs
provided by the Microsoft Ajax Library. So far, you know how to create client classes
and add them to namespaces, define client properties, and implement inheritance.
The last two constructs we’ll examine are interfaces and enumerations.

3.5 Understanding interfaces and enumerations

JavaScript doesn’t support interfaces and enumerations, but the Microsoft Ajax
Library simulates these constructs using functions as it does classes. The pattern
is similar: You declare a function and then upgrade it to an interface or an enu-
meration using the registerInterface or registerEnum method, respectively.
In the same manner as registerClass, these methods store in a function various
pieces of information that allow them to be treated as interfaces or enumerations
rather than as simple functions. Let’s start by examining interfaces; enumera-
tions will follow.

3.5.1 Interfaces

An interface allows an object to know what another object can do, without knowing
how. An interface is said to define a contract between a class and the outside world.
Interfaces are different from classes in the sense that they define a list of methods
and properties that a class must expose, but it’s the class’s responsibility to provide
an implementation. Listing 3.11 contains the declaration of an interface called

MyClass.callBaseMethod(this, "methodName", [parameter1, parameter2, ...]);

Array of method parametersFully qualified name
of the class

Method name

Current instance

Figure 3.5 Syntax of the callBaseMethod method, which is used for invoking the base implementation
of a method

100 CHAPTER 3

JavaScript for Ajax developers
IComparable that exposes a single method, compareTo, which performs a generic
comparison between objects.

Type.registerNamespace('Samples');

Samples.IComparable = function() {
 throw Error.notImplemented();
}
Samples.IComparable.prototype = {

 compareTo : function(comparand) {
 throw Error.notImplemented();
 }
}
Samples.IComparable.registerInterface('Samples.IComparable');

To define the interface, you start by creating a JavaScript function. Because you’re
dealing with an interface type, you need to prevent the function from being used
as a constructor. To do this, you throw a client exception of type notImplemented
as soon as you try to call the function.

 The same thing must be done for the methods defined by the interface. When
a client class implements an interface, its methods are copied into the construc-
tor’s prototype. As a consequence, a client exception of type notImplemented will
be thrown if you don’t override the implementation of the method. This is how
interfaces work in the Microsoft Ajax Library.

 The final step is to register the interface by calling the registerInterface
method on the interface type. The only argument accepted by the method is a
string with the fully qualified name of the interface. The call to registerInter-
face ensures that the interface is properly recognized by the type system.

 Now, you’ll define a Temperature class that implements the IComparable inter-
face. The compareTo method returns an integer based on the result of the com-
parison. The return value is 0 if the two temperature values are the same, -1 if the
compared value is less than the value held by the object that performs the com-
parison, and +1 if it’s greater. The code for the Temperature class appears in list-
ing 3.12.

Listing 3.11 Declaring the IComparable interface

Define single method
called compareTo

Understanding interfaces and enumerations 101
Samples.Temperature = function(value) {
 this._value = value;
}
Samples.Temperature.prototype = {
 compareTo : function(comparand) {
 if(Samples.Temperature.isInstanceOfType(comparand)) {
 var thisValue = this.get_value();
 var comparandValue = comparand.get_value();

 if(thisValue == comparandValue)
 return 0;

 return (thisValue > comparandValue) ? 1 : -1;
 }
 else {
 throw Error.argumentType();
 }
 },

 get_value : function() {
 return this._value;
 },

 set_value : function(value) {
 this._value = value;
 }
}
Samples.Temperature.registerClass('Samples.Temperature', null,
 Samples.IComparable);

As soon as you pass the Samples.IComparable interface to the registerClass B
method, all the methods defined in the interface are copied in the prototype
object of the Temperature constructor. If you forget to specify the interface type,
the runtime doesn’t raise an error, but the interface isn’t recognized as being
implemented by the Temperature class.

 Together with interfaces, enumerations are a feature supported by many
object-oriented languages. Because JavaScript doesn’t support them, let’s see how
you can fill this gap using the Microsoft Ajax Library.

3.5.2 Enumerations

Enumerations are a way to give names to numbers. The Microsoft Ajax Library lets
you create enumerations to associate names with integer values. You can also spec-
ify values in hexadecimal format and create bit-field flags. Let’s start with the pat-
tern for creating a Size enumeration, shown in listing 3.13.

Listing 3.12 Implementing the IComparable interface

Check
types

Values are
equal

Values are
different

Types are
different

Implement
IComparable B

102 CHAPTER 3

JavaScript for Ajax developers
Type.registerNamespace('Samples');

Samples.Size = function() {
 throw Error.notImplemented();
}
Samples.Size.prototype = {
 Small: 1,
 Medium: 2,
 Large: 3
}
Samples.Size.registerEnum('Samples.Size');

As you did with interfaces, you define an enumeration by starting with a func-
tion. Because it makes no sense to instantiate an enumeration, you need to avoid
the use of the Samples.Size function as a constructor. To do this, it’s enough to
raise a client exception of type notImplemented as soon as someone attempts to
call the function.

 The enumeration names are defined in the prototype object, and they must be
integers. They can also be specified using the hexadecimal format. The name and
value pairs in the prototype object are considered the names and values of the
enumeration. In the example, you define three names (Small, Medium, and
Large) associated with three integers (1, 2, 3). You call the registerEnum method,
passing the fully qualified name of the enumeration as an argument.

 Let’s play a bit with enumerations to illustrate some of the methods available.
Creating a variable of type Samples.Size is easy:

var size = Samples.Size.Medium;

At this point, the size variable holds the value 2. To display the name associated
with a particular value, you call the toString method on the enumeration type,
passing one of the enumeration values:

alert(Samples.Size.toString(size));

If you try to pass an invalid value, a client exception of type ArgumentOutOfRange-
Exception is thrown. You can also parse a string as an enumeration value by call-
ing the parse method on the enumeration type:

var smallSize = Samples.Size.parse('Small');

Keep in mind that the string passed to the parse method is case sensitive. If the
enumeration type doesn’t contain a matching name, a client exception of type
ArgumentException is thrown.

Listing 3.13 A Size enumeration

Understanding interfaces and enumerations 103
 You can also define enumerations to use flags. Flags are useful when you need
to combine multiple values of an enumeration. Listing 3.14 shows an example
that helps you understand the use of flags mode.

Type.registerNamespace('Samples');

Samples.FileAccess = function() {
 throw Error.notImplemented();
}
Samples.FileAccess.prototype = {
 Read : 1,
 Write : 2,
 Execute : 4
}
Samples.FileAccess.registerEnum('Samples.FileAccess', true);

In order for flags mode to work correctly, values must be powers of 2. To enable
flags, you must pass true as the second argument to the registerEnum method.
You can also combine flags by using the bitwise OR operator:

var readWritePermission = Samples.FileAccess.Read |
 ➥Samples.FileAccess.Write;

To remove a flag, you have to AND-NOT the combined flags with the one you want
to remove, as in the following statement:

var readPermission = readWritePermission &
 ➥~Samples.FileAccess.Write;

Finally, if you call the toString method when in flags mode, you obtain a string
that contains all the combined names, separated by commas. For example, the fol-
lowing statement displays a message box with the string Read, Write:

alert(Samples.FileAccess.toString(readWritePermission));

We’ve now covered all the object-oriented constructs provided by the Microsoft
Ajax Library. In the next section, you’ll see how this enhanced type system can be
used to perform reflection on JavaScript objects.

Listing 3.14 A FileAccess enumeration that uses flags

104 CHAPTER 3

JavaScript for Ajax developers
3.6 Using type reflection

Reflection is the process of discovering information about objects at runtime. For
example, you might be interested in knowing whether an object has defined a
particular property, or if a property is a function rather than an array. Based on
this information, you can either take different actions or raise errors.

 The Microsoft Ajax Library provides a group of methods to reflect on types
created with the enhanced type system. As you’ll see, the goal is to be able to
retrieve information about client objects while taking into account the enhanced
type system and the object-oriented constructs provided by the library.

3.6.1 Reflection methods

The Microsoft Ajax Library provides an enhanced type system together with
object-oriented constructs. You might need to know whether a constructor has
been registered as either a class or an interface. Also, you might need to know
whether two classes are in a parent-child relationship, or whether a certain class
implements a particular interface. Table 3.1 lists a group of methods defined by
the Microsoft Ajax Library that can be used to retrieve information on client
objects at runtime.

Table 3.1 Methods defined by the Microsoft Ajax Library to perform reflection on client objects that
 take advantage of the enhanced type system

Method name Parameters Returns…

Type.isClass Type True if a function has been registered as a class

Type.isInterface Type True if a function has been registered as an interface

Type.isNamespace Object True if a function has been registered as a namespace

getName - The name of the current type as a string

getBaseType - A reference to the base class

getBaseMethod Object, String A reference to a method with the given name from an
object

isInstanceOfType Object True if the given instance is of type Type

getInterfaces - A list with all the interfaces implemented by a class

implementsInterface Type True if an instance’s class implements the given
interface

isImplementedBy Type True if an interface is implemented by the given
instance’s class

Using type reflection 105
The first set of methods, Type.isClass, Type.isInterface, and Type.isName-
space, determine how a particular object has been registered in the context of the
enhanced type system. As we explained in the previous sections, JavaScript func-
tions are objects, and the Microsoft Ajax Library leverages them in order to simulate
classes, interfaces, and enumerations. For example, the Type.isInterface method
accepts a reference to a function and returns true if the function has been regis-
tered as an interface. In the same manner, the Type.isClass method returns true
if the function passed as an argument has been registered as a class using the reg-
isterClass method. In the following code, the petIsAClass variable holds true:

var petIsAClass = Type.isClass(Samples.Pet);

In section 3.3.4, you saw that namespaces can be simulated by expanding generic
objects. The Type.isNamespace method accepts an object and checks whether it
has been registered as a namespace using the Type.registerNamespace method.
As a consequence, the isNamespace variable in the following code holds true:

var isNamespace = Type.isNamespace(Samples);

Let’s continue our exploration of the methods for reflecting on client objects by
talking about the techniques that you can use to determine an object’s type.

3.6.2 Object typing

In JavaScript, you can use the typeof operator to distinguish an object from
another primitive type such as string, a number, or a Boolean value. However, the
typeof operator doesn’t distinguish between objects and other objects. If you cre-
ate objects using different constructors, the typeof operator always returns func-
tion, which is the type of the constructor.

 To distinguish between objects instantiated with different constructors, you
could use JavaScript’s instanceof operator. Due to the way inheritance is
resolved, the instanceof operator doesn’t work with classes created with the
Microsoft Ajax Library. Instead, you have to use the isInstanceOfType method.
This method is called on the type that you will test. It accepts an object as an argu-
ment and returns true if the object is an instance of that type. In the following
code, the test1 and test2 variables hold true because both instances are of type
Pet. The test3 variable holds false because tmpr1 isn’t of type Cat:

var pet1 = new Pet();
var cat1 = new Cat();
var tmpr1 = new Temperature();

var test1 = Samples.Pet.isInstanceOfType(pet1);
var test2 = Samples.PetIsInstanceOfType(cat1);
var test3 = Samples.Cat.isInstanceOfType(tmpr1);

106 CHAPTER 3

JavaScript for Ajax developers
To retrieve information about the inheritance relationship between classes, you
use the inheritsFrom method. This method is called on a child class and accepts
the potential parent class as an argument. It returns true if the class passed as an
argument is effectively the parent class. In the following code, the catIsAPet
variable hold true because Cat inherits from Pet:

var catIsAPet = Samples.Cat.inheritsFrom(Samples.Pet);

When talking about client classes, we stated that the Microsoft Ajax Library stores
information about the type name in constructors. If you want to know the name
of a type as registered by the Microsoft Ajax Library, you can call the getName
method and get back a string with the type name:

var customTypeName = Samples.Pet.getName();
var booleanTypeName = Boolean.getName();

The first statement calls getName on the Pet class defined in section 3.3.1. The
variable customTypeName holds the string Samples.Pet. In the second statement,
you can see that the method also works on JavaScript’s built-in types, like Boolean.
In this case, the variable booleanTypeName holds the string Boolean.

 To complete our discussion of reflection in
JavaScript, let’s combine some of the methods
illustrated in the previous section to build a more
complex example. In the next section, you’ll build
a class browser for displaying the classes and inter-
faces defined in the root namespaces of the Micro-
soft Ajax Library.

3.6.3 Building a simple class browser

In this section, you want to combine some of the
reflection methods presented in the previous sec-
tion to obtain a class browser for exploring classes
and interfaces defined in the root namespaces of
the Microsoft Ajax Library. Figure 3.6 shows the
example running in Internet Explorer.

 The code in listing 3.15 creates a list with the
namespaces defined in the library. When the user
chooses one from the list, you use some of the
reflection methods to display all the classes and
interfaces defined in that namespace.

Figure 3.6 The Simple
Namespace Browser running
in Internet Explorer

Using type reflection 107
<div>
 Namespace:
 <select id="ddNamespace">
 <option>Select a namespace</option>
 <option>Sys</option>
 <option>Sys.Net</option>
 <option>Sys.UI</option>
 <option>Sys.Services</option>
 <option>Sys.Serialization</option>
 </select>
 <div id="info"></div>
</div>

<script type="text/javascript">
<!--
 function pageLoad(sender, e) {
 var ddl = $get("ddNamespace");

 $addHandlers(ddl, {change:onNamespaceChange}, this);
 }

 function onNamespaceChange(evt) {
 var interfaces = [];
 var classes = [];
 var info = $get("info");
 var ddl = evt.target;

 if(ddl.selectedIndex == 0) {
 info.innerHTML = "";
 return;
 }

 var ns = eval(ddl.options[ddl.selectedIndex].text);

 for(var attr in ns) {
 var currMember = ns[attr];

 if(typeof(currMember) == "function") {
 if(Type.isClass(currMember)) {
 Array.add(classes, currMember.getName());
 }
 else if(Type.isInterface(currMember)) {
 Array.add(interfaces, currMember.getName());
 }
 }
 }

 var sb = new Sys.StringBuilder();

Listing 3.15 Code for the namespace browser

Parse
namespace

B

Look for
class

C

Look for
interface

D

Client StringBuilder
instance

E

108 CHAPTER 3

JavaScript for Ajax developers
 displayArray(interfaces, "Interfaces:", sb);
 displayArray(classes, "Classes:", sb);
 info.innerHTML = sb.toString();
 }

 function displayArray(arr, title, sb) {
 sb.append("");
 sb.append(title);
 sb.append("
");

 sb.append(arr.join("
") + "
");
 }
//-->
</script>

The markup for the example defines a drop-down list with all the namespaces
defined by the Microsoft Ajax Library. When a namespace is selected, the corre-
sponding string is evaluated B to obtain a reference to the namespace.

 Then, you loop the selected namespace to search for classes and interfaces
contained in it. To do this, you first check for functions (recall that classes and
interfaces are simulated with functions by the Microsoft Ajax Library). You use the
isClass and isInterface methods CD to determine whether you’ve found a
class or an interface and then add it to the corresponding array.

 Finally, you use a string builder instance E to format the elements of the
arrays F and display the information about classes and interfaces in a label on
screen. We discussed the Sys.StringBuilder class in chapter 2.

 With this example, our discussion of the object-oriented constructs provided
by the Microsoft Ajax Library is complete. JavaScript developers will benefit from
the enhanced type system, and .NET developers will have a chance to become
more comfortable with the JavaScript language.

 In the following section, we’ll introduce the event model provided by the
Microsoft Ajax Library. With this model, you can expose and raise events in Java-
Script objects.

3.7 Working with events

JavaScript developers are acquainted with the event model provided by the DOM.
You can program against the DOM elements of a web page by hooking up their
events and executing code in event handlers. For example, a button element can
raise a click event when it’s clicked by the user. The window object raises a load

Format content
of arrays

F

Working with events 109
event when the page is loaded and an unload event when the user navigates away
from the page.

 Although DOM objects can raise events, this isn’t true for generic JavaScript
objects. The Microsoft Ajax Library provides an event model that lets you expose
events in client objects, following a model that closely resembles the one used in
the .NET framework. We’ll divide this discussion into two parts. First, you’ll see
how to expose an event in a JavaScript object. Then, you’ll learn how to subscribe
to and handle an event.

3.7.1 Exposing an event

With the Microsoft Ajax Library, you can expose an event in a JavaScript object
and subscribe to it with multiple handlers. This means that events are multicast,
because you’re able to handle them with multiple functions. Exposing an event is
a three-step process:

1 Create a method that adds an event handler.

2 Create a method that removes an event handler.

3 Create a method that is responsible for raising the event.

The methods responsible for adding and removing the event handlers must fol-
low a naming convention defined by the Microsoft Ajax Library:

■ The name of the method responsible for adding an event handler must be
add_eventName, where eventName is the name of the event.

■ The name of the method responsible for removing an event handler must
be remove_eventName, where eventName is the name of the event.

For example, if the object exposes an event called initialize, it has two methods
called add_initialize and remove_initialize. These methods are responsible
for adding and removing event handlers for the initialize event. The Applica-
tion object, which we introduced in chapter 2, exposes some events, one of which
is init. The Sys.Application object has two methods called add_init and
remove_init.

NOTE In the .NET framework, the process for exposing events is conceptually
similar. There, you use a delegate to add and remove event handlers, and
you fire the event by executing the delegate. You can read a good article
about the .NET event model at http://msdn.microsoft.com/msdnmag/
issues/03/02/BasicInstincts/.

Figure 3.7 illustrates the pattern used in the Microsoft Ajax Library to expose an
event in a JavaScript object.

http://msdn.microsoft.com/msdnmag/issues/03/02/BasicInstincts/
http://msdn.microsoft.com/msdnmag/issues/03/02/BasicInstincts/

110 CHAPTER 3

JavaScript for Ajax developers
In order to be able to manage multiple event handlers, the Microsoft Ajax Library
provides a class called Sys.EventHandlerList, which encapsulates an object used
to store multiple event handlers for multiple events. You access this through two
class methods: addHandler and removeHandler. Objects that want to expose
events usually create an instance of the class in the constructor and store it in a
private property:

this._events = new Sys.EventHandlerList();

At this point, the event methods interact with the event handlers list to manage
event handlers.

NOTE The base Sys.Component class, used for creating client components,
comes with an instance of the Sys.EventHandlerList class and support
for client events. Client components are discussed in chapter 8.

Listing 3.16 puts the theory into practice and shows how this is done in a Collec-
tion class that wraps an array. The class can raise an itemAdded event whenever a
new element is added to the array. For simplicity, we show only the code for the
add operation, but removing an element can be implemented with similar code.

Type.registerNamespace('Samples');

Samples.Collection = function() {
 this._innerList = [];
 this._events = null;
}

Listing 3.16 A Collection class that wraps an array

Object

eventName
add_eventName()

remove_eventName()

_raiseEvent()

Figure 3.7 With the Microsoft Ajax Library, objects can expose events. The add_eventName
and remove_eventName methods (where eventName is the name of the event) are used to
add and remove an event hander, respectively. Internally, a function called _raiseEvent can
be used to raise the event.

List of event
handlers

B

Working with events 111
Samples.Collection.prototype = {
 add : function(member) {
 this._innerList.push(member);
 this._raiseEvent('itemAdded', Sys.EventArgs.Empty);
 },

 get_events : function() {
 if(!this._events) {
 this._events = new Sys.EventHandlerList();
 }

 return this._events;
 },

 add_itemAdded : function(handler) {
 this.get_events().addHandler('itemAdded', handler);
 },

 remove_itemAdded : function(handler) {
 this.get_events().removeHandler('itemAdded', handler);
 },

 _raiseEvent : function(eventName, eventArgs) {
 var handler = this.get_events().getHandler(eventName);

 if (handler) {
 if (!eventArgs) {
 eventArgs = Sys.EventArgs.Empty;
 }
 handler(this, eventArgs);
 }
 }
}
Samples.Collection.registerClass('Samples.Collection');

The add_itemAdded and remove_itemAdded methods are responsible for adding
and removing event handlers for the itemAdded event. They interact with the
event-handlers list by invoking its addHandler C and removeHandler D methods.
In the code, the list of event handlers is accessed through a method called
get_event, which returns the instance stored in the _events field B. Note that the
creation of the Sys.EventHandlerList instance is done (lazily) only the first time
the object tries to access the events property, so that constructing an instance
doesn’t cost the creation of the event list if it’s not going to be used. This is done to
remain consistent with the model used by client components, which encapsulate
an instance of the Sys.EventHandlerList class by default. More information is
given in chapter 8, which is entirely dedicated to client components.

Add handler to list C

Remove handler from list D

Get handler for event E

Fire
eventF

112 CHAPTER 3

JavaScript for Ajax developers
 Instead of writing a separate method to fire each event you’re exposing, it’s
preferable to write a single _raiseEvent method and pass it a string with the
event name and the event arguments. The _raiseEvent method calls getHandler
on the event-handlers list to retrieve all the handlers for the given event. Stored in
the handler variable E is a function that, when called F, executes all the han-
dlers for the event.

 When the handlers are called F, each receives two arguments: a reference to
the object that raised the event and an object that contains the event arguments.
This paradigm should be familiar to .NET developers, because in the .NET frame-
work, event handlers receive similar arguments. Note that if you don’t specify any
event arguments, the _raiseEvent method uses Sys.EventArgs.Empty, which is
the static, singleton instance of the Sys.EventArgs class. This instance represents
the absence of event arguments.

 In the add method, you explicitly pass the Sys.EventArgs.Empty instance
when calling _raiseEvent to fire the itemAdded event. A full implementation
would probably derive a custom class from Sys.EventArgs that includes a refer-
ence to the item that was just added.

 Now that you know how to expose an event, let’s see how external objects can
subscribe to and handle it.

3.7.2 Subscribing to and handling events

In the previous section, we discussed how to expose an event in a client object.
Now to this question: How can you subscribe to and handle such an event? Sub-
scribing to an event is simple: All you have to do is call the method responsible for
adding an event handler.

 For example, if you want to subscribe to the itemAdded event raised by the
Collection class defined in listing 3.16, you pass a JavaScript function to the
add_itemAdded method of the Collection instance. This function is an event
handler for the itemAdded event. If you pass the same function to the
remove_itemAdded method, you remove it from the list of event handlers. To add
multiple handlers, you have to invoke the add_itemAdded method multiple times.
Translated into code, event subscription is performed as follows:

var collection = new Samples.Collection();

collection.add_itemAdded(onItemAdded);

Now, you need to define the onItemAdded function, which is the event handler
that you passed to the add_itemAdded method. You can do so this way:

function onItemAdded(sender, e) {
 alert('Added an item to the collection');
}

Summary 113
The event handler is a function that accepts two arguments. As we explained in
the previous section, the event handler receives references to the object that
raised the event and an object that represents the event arguments. We called
these arguments sender and e to emphasize the similarity with the event model
used in the .NET framework. Finally, you add an item to the collection to fire the
itemAdded event. This can be done as follows:

collection.add('test string');

3.8 Summary

In this chapter, we reviewed the most important concepts of the JavaScript lan-
guage and discussed how to leverage the Microsoft Ajax Library in order to
become more productive with JavaScript.

 We started by discussing the main data structures provided by JavaScript, such
as objects and arrays. Then, we made an extensive overview of functions, which
are objects you can use to define methods and create custom objects. After taking
a peek at the various literals supported by JavaScript, we introduced JSON, a light-
weight data format that lets Ajax applications exchange data; it’s often preferred
to XML, due to its compactness and ease of parsing.

 The Microsoft Ajax Library leverages the object model provided by JavaScript
and provides object-oriented constructs commonly found in class-based lan-
guages, such as classes, interfaces, and enumerations. With the library, you can
also easily create namespaces, implement inheritance, and override methods. The
enhanced type system provided by the Microsoft Ajax Library lets you perform
reflection on objects. For example, you can discover whether a type is a class
rather than an interface. You can also determine whether an instance is of a cer-
tain type or whether a class is in parent-child relationship with another class.

 Finally, we discussed how you can expose multicast events in JavaScript objects
using the event model provided by the Microsoft Ajax Library, which closely
resembles the one used in the .NET framework.

 Now, it’s time to take a break from the Microsoft Ajax Library and focus on the
server framework. In the next chapter, we’ll introduce the ASP.NET AJAX server
controls and explain how to upgrade an ASP.NET website to ASP.NET AJAX.

Exploring the
Ajax server extensions
In this chapter:
■ Updating an existing ASP.NET application
■ Performing partial page updates with the

UpdatePanel
■ Using the ScriptManager
■ Working with timers
■ Obtaining user feedback
114

Ajax for ASP.NET developers 115
What makes ASP.NET AJAX unique and separates it from other Ajax toolkits and
frameworks is the fact that its architecture spans both the client and server. In
addition to a rich set of JavaScript libraries, it provides a set of server controls to
assist in Ajax development. In the previous two chapters, we revealed the basics of
the Microsoft Ajax Library and its ambitions of simplifying Ajax and JavaScript for
client-side development. Because most Ajax development originates from the cli-
ent, these chapters are a pivotal part of the book and will serve as a valuable refer-
ence for many of the later chapters.

 In this chapter, we continue our discussion of ASP.NET AJAX by delving into the
server-side portion of the framework, called the Ajax server extensions. If you’re
familiar with the basics of the server extensions, you may wish to skim this chapter
or jump ahead to chapters 6 and 7 to gain a deeper understanding of their inner
workings. Nonetheless, the foundation we lay here is important and will be benefi-
cial for even experienced Ajax developers.

 As the name implies, Ajax server extensions offer Ajax support for server-side
development. To help you understand why this is so valuable, we’ll expose some
of the issues and challenges of Ajax development from the client perspective.

4.1 Ajax for ASP.NET developers

An Ajax application runs in the browser and is written primarily in JavaScript.
This process is initiated when a richer and more intuitive application is delivered
from the server to the browser. This includes the logic for rendering and updating
the UI, as well as communicating with a server for data needs. The end result is an
application that runs more smoothly over time and provides a better user experi-
ence. This sounds great and is the recommended approach for Ajax develop-
ment. However, with this approach comes a new set of issues to address.

 For example, what about ASP.NET developers who are unfamiliar with Java-
Script or prefer to keep the application logic on the server? What about the rare
cases when the browser has JavaScript disabled? What about complex controls like
the GridView—does it make sense to rewrite these controls for the client? What
about security and exposing the application logic on the client?

 These are just a few of the common concerns that surface with Ajax develop-
ment. Thankfully, the ASP.NET AJAX framework offers an alternative.

4.1.1 What are the Ajax server extensions?

Built on top of ASP.NET 2.0, the Ajax server extensions include a new set of server
controls and services that simulate Ajax behavior on the client. The extensions

116 CHAPTER 4

Exploring the Ajax server extensions
don’t adhere to the Ajax model in the tradi-
tional sense but respond in a manner that pro-
vides that illusion to the end user. In this
chapter, we’ll focus on the server controls that
provide this functionality; the next chapter
will give you some insight into how ASP.NET
services such as authentication and profile are
also supported.

 As a quick overview, let’s look at the server
controls you have at your disposal. Figure 4.1
shows the new controls that are available to
the ASP.NET toolbox in Visual Studio. We’ll
cover each of these controls in this chapter by
explaining when and how they should be used.

 Since you’re reading this book (and have come this far), chances are you’ve
previously done some ASP.NET development. If you’re looking to take an applica-
tion you wrote previously and add Ajax support to it, then the next few sections
should be right up your alley.

4.2 Enhancing an existing ASP.NET site

The goal for the next few sections is straightforward: to take a traditional web
application written in ASP.NET and enrich the user experience by adding the Ajax
server extensions. In addition to showing how the controls are used, this
approach will also demonstrate why and how they’re applied in a normal situa-
tion. One of the reasons the server extensions are so enticing in this scenario is
that they allow you to rapidly integrate Ajax-like behavior into existing applica-
tions. It’s important to note that without some care and thought, use of the server
extensions can be abused and in some cases can even degrade performance.

 We’ll assess each portion of the application as we reach it; but first, here are
some general guidelines to keep in mind:

■ Improve network latency—Do your best to cut back on the amount of data
passed between the browser and server. If you can eliminate unnecessary
data, network latency and response time will improve.

■ Eliminate full-page refreshes—Keep the interaction between the user and the
application as fluid as possible, and avoid a full-page refresh whenever
feasible.

Figure 4.1 The Ajax server extensions
are a new set of server controls that
complement the already powerful
controls in the ASP.NET toolbox.

Enhancing an existing ASP.NET site 117
■ Keep UI and application logic in code-behind files—Keep any logic used to ren-
der or manipulate the UI in the server-side code. This gives you the luxury
of supporting browsers that have JavaScript disabled as well as not exposing
logic to savvy web users via the client script.

■ Use seamless, transparent integration—Try to keep the existing application
intact as much as possible so that future changes will be easy to integrate
and few or no changes to the existing logic will be required.

■ Stick to a familiar paradigm—Leverage the server controls so that a typical
ASP.NET developer can continue to develop using an already familiar para-
digm (server controls and ASP.NET postback mechanism).

If you can meet these goals, you’ll have done something rather impressive. Let’s
begin our journey by examining the existing site you’ll be working with for the
remainder of the chapter.

4.2.1 A sample ASP.NET site

Figure 4.2 shows the home page for a fictitious and wealthy record company: Song
Unsung Records. Although it’s visually appealing, the application is in desperate
need of help in the usability department.

 For the sake of a realistic scenario, let’s imagine that the site has grown in pop-
ularity and that you’ve been brought aboard as a highly paid consultant to (you
hope) improve its usability and performance. After taking a quick look at the
interface, you notice immediately that a few areas on the page encourage user
interaction: the Artists search at the top, the list of recent feedback items at lower
left, and the section for news about a music genre on the right. Unfortunately,
interacting with some of the controls in these regions invokes a postback, which
causes the page to refresh and takes away any interaction the end user has with
the site.

 We briefly touched on postbacks in chapter 1, but it’s worth mentioning again
that a postback is costly because of the amount of data sent back and forth to the
server and the loss of interaction for the user. Understanding this behavior is
important because it’s an integral part of how ASP.NET behaves and what the Ajax
server extensions are all about.

118 CHAPTER 4

Exploring the Ajax server extensions
4.2.2 Configuring an existing ASP.NET site

Creating new sites that are Ajax-enabled is simple: You select the appropriate tem-
plate from the New Site dialog (see chapter 1 and appendix A) in Visual Studio,
and the configuration work is done for you. Taking an existing application and
adding Ajax support requires a few more steps. The first involves adding a refer-
ence to the library.

NOTE If you’re planning to follow along at home, you can download the files
from the book’s website. If you don’t currently have access to the code,
the snippets and concepts covered in the following sections are funda-
mental enough that you can grasp the concepts. The existing sample also
requires SQL Server Express—a free version of SQL Server that other
samples in the book use as well.

Figure 4.2 This application was written for a fictitious record company. Numerous areas on the
page encourage user interaction. Each interaction, unfortunately, causes the page to refresh.

Enhancing an existing ASP.NET site 119
To add a reference to a library in a website or project, you can select the Add Ref-
erence option from the Website or Project menu in the menu bar. You can also right-
click the site or project in the Solution Explorer tab of Visual Studio and choose the
same option. A dialog similar to the one depicted in figure 4.3 is displayed.

Postbacks in a nutshell
In ASP.NET, an event—typically a user-driven one such as the clicking of a button—
causes a page to send its contents back to the server for processing. This happens
principally because pages are stateless, and in order for the server to retrieve
the most recent status of a page, the page and all its contents are included in
the request back to the server. This is made possible by a hidden field on the
page called ViewState, which is responsible for storing information about the state
of all the server controls in an encoded format. As you can imagine, passing this
information back and forth on each postback can become costly over time, not
just in terms of bandwidth for the server but also in terms of frustration for the user.

One of the primary objectives of the Ajax server extensions is to find an alter-
native to some of this undesirable behavior. We’ll go deeper into postbacks later
in the chapter and with greater detail in the chapters that address the UpdatePanel
control. You should understand now that postbacks cause a full-page refresh to
occur, which is a behavior that Ajax applications seek to suppress or eliminate.

Figure 4.3
The System.Web.Extensions
library is visible in the .NET tab of
the Add Reference dialog. If this
isn’t visible but the framework has
been installed, then you can select
the ‘Browse’ tab to add the dll
manually. If you don’t see this,
you might want to investigate
your installation and confirm that
the framework has been
installed correctly.

120 CHAPTER 4

Exploring the Ajax server extensions
From the dialog, select System.Web.Extensions to add a reference to ASP.NET
AJAX—this should appear after you’ve successfully installed the framework. If this
option isn’t present in the list, take a moment to confirm that you’ve installed the
framework correctly, and then select the Browse tab to navigate to the Sys-
tem.Web.Extensions.dll file on your local machine. Next up is the web.config file
that defines some of the settings for the application.

 The web.config file defines the configurations of ASP.NET applications. Items
like handling error pages, permissions, and connections strings are placed there
for reference and integration with other libraries and components. For ASP.NET
AJAX, web.config is used to incorporate HTTP handlers, configuration settings,
the generating of proxies, and a few other settings that a website needs to leverage
the framework.

 Most developers create a new Ajax-enabled site and merge the changes
between the new web.config file and the one on their existing site. We’ll leave this
as exercise for you because it entails simple cut-and-paste steps that are too gratu-
itous to list here. For a detailed explanation of the web.config settings, see http://
ajax.asp.net/docs/ConfiguringASPNETAJAX.aspx. A helpful video is also available
on the ASP.NET AJAX homepage at http://www.asp.net/learn/videos/view.aspx?-
tabid=63&id=81.

 Assuming you’ve configured the site accordingly, it’s time to add Ajax support
by including the most important control in the framework: the ScriptManager.

4.3 ScriptManager: the brains of an Ajax page

The ScriptManager control is considered the brains of an Ajax-enabled page and
is by far the most important control in the framework. As we move along in this
chapter and throughout the book, we’ll demonstrate how to leverage the Script-
Manager and reveal its intricacies. The important thing to understand at this
point is that, as the name suggests, this control is responsible for many of the
operations that take place during an Ajax application.

 Because you want this control to be present on all the pages of the site, you
place it in the master page of the web application rather than in the home page
(or content page):

<asp:ScriptManager ID="ScriptManager1" runat="server" />

You place it in the master page so that any content pages that inherit from it receive
the same functionality. This is generally a good practice for similar controls that are
used across multiple content pages. Furthermore, this invisible control must be

ScriptManager: the brains of an Ajax page 121
declared before all other Ajax-enabled server controls in the page hierarchy to
ensure that they’re loaded and initialized accordingly.

 Even though the ScriptManager control isn’t declared in the content page,
you can easily retrieve an instance of it by calling its static method GetCurrent
and passing in the current Page instance:

ScriptManager scriptManager = ScriptManager.GetCurrent(this.Page);

With this instance, you can manage and configure the way the errors, scripts, and
other settings on the page behave. We’ll explore some of this in a moment; first,
let’s see what adding the ScriptManager to the page does to the application.

4.3.1 Understanding the ScriptManager

The primary responsibility of the ScriptManager is to deliver scripts to the browser.
The scripts it deploys can originate from the ASP.NET AJAX library—embedded
resources in the System.Web.Extensions.dll, local files on the server, or embedded
resources in other assemblies. By default, adding the control to the page, declara-
tively or programmatically, delivers the required scripts you need for Ajax function-
ality on the page. To see the evidence, right-click the home page from the browser,
and select the View Source option (or select View > Source in IE, or View > Page-
Source in Firefox). In the viewed source window, search for an occurrence of Script-
Resource.axd. You’ll find something similar to (but not exactly like) listing 4.1.

<script src="/04/ScriptResource.axd?d=zQoixCVkx8JK9a1Az_4OOriP7
 iw9S-TvBA24ugyHeZ8NSIfT6_bRe7yPttg-
 sOhCr1ud1jBUWNQa9KSAugqepLY7DN4cuXzH5ybztCger
 rk1&t=633141075498906250"
 type="text/javascript">
</script>

Listing 4.1 An example of how a script is deployed with the ScriptManager

More on master pages
Master pages are used to define a consistent look and feel, as well as behavior,
for a group of pages in an application. Each page that adopts the look and feel
of a master page is called a content page. Whenever possible, it’s best to place
the ScriptManager in a master page so that each content page that inherits from
it adopts the same behavior. For more information on master pages, visit http:/
/msdn2.microsoft.com/en-us/library/wtxbf3hh.aspx.

122 CHAPTER 4

Exploring the Ajax server extensions
Let’s decode what this tag means; this is at the core of how scripts are delivered to
the client.

 In ASP.NET 2.0, resources embedded in an assembly are accessed through the
WebResource.axd HTTP handler. In the ASP.NET AJAX framework, a new HTTP
handler called ScriptResource.axd replaces it with some additional functionality
for localization and browser compression. Listing 4.1 shows a reference to a script
assigned by the ScriptManager that is eventually downloaded by the new handler.

 What about the cryptic text? How does the browser decipher it, and what does
it mean? A closer look exposes two parameters: d and t. They assist the browser in
identifying and caching the resource. The first is the encoded resource key,
assigned to the d parameter. The second is the timestamp, t, that signifies the last
modification made to the assembly (for example, t=632962425253593750). When
the page is loaded a second time, the browser recognizes the parameters and
spares the user the download by using what’s in its cache to retrieve the resources.

NOTE Embedding resources in an assembly is a common technique for controls
and libraries that require resources like images and scripts. This
approach simplifies how controls are packaged and deployed.

Now that you understand how the scripts are downloaded, let’s see how you can
leverage the ScriptManager control to deploy additional scripts.

4.3.2 Deploying JavaScript files

Earlier, we examined how the ScriptManager control downloads resources to the
browser by using a new HTTP handler: ScriptResource.axd. You also got a glimpse
of this in chapter 2 when we discussed the Microsoft Ajax Library and how the
core JavaScript files in the framework are delivered and manipulated with the
ScriptManager. The next logical step is for you to learn how other scripts can
be deployed.

 The ScriptManager control has a property called Scripts that contains a col-
lection of ScriptReference objects. A ScriptReference is nothing more than a
way of registering a JavaScript file for use on a page. Listing 4.2 demonstrates how
to include a few scripts on the page using the ScriptReference collection.

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Path="~/scripts/Script1.js" />
 <asp:ScriptReference Path="~/scripts/Script2.js" />

Listing 4.2 A ScriptReference, which registers files for deployment to a web page

ScriptManager: the brains of an Ajax page 123
 <asp:ScriptReference Assembly="Demo"
 Name="Demo.SuperScript.js" />
 </Scripts>
</asp:ScriptManager>
Cueballs in code and text

In the first two entries, local JavaScript files are registered as references for the
page. In the third entry, an embedded JavaScript file from an assembly is
deployed to the site. Each reference added to the collection results in another
ScriptResource.axd entry in the response’s payload to the browser.

 Now that you have a general grasp of how scripts are deployed, let’s examine
another functionality of the ScriptManager: registering service references.

4.3.3 Registering services

Working with JavaScript files is an important component of Ajax programming.
However, accessing the server for data from JavaScript is what makes Ajax truly
possible. In order to be granted this support with the ASP.NET AJAX framework,
you must register a service reference for each local web service you wish to inter-
act with.

 The ScriptManager has a property called Services that contains a collection
of ServiceReference objects. A ServiceReference object is a mechanism for regis-
tering services you can access from JavaScript. The end result is a JavaScript proxy
that serves as the gateway to the service from the browser. Listing 4.3 demon-
strates how to register local services with the ScriptManager.

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="~/Services/MainService.asmx" />
 <asp:ServiceReference Path="~/Services/TestService.asmx" />
 </Services>
</asp:ScriptManager>

Chapter 5 will take you deeper into how to communicate with services. For now,
you can see that the pattern for adding script references is also applied to service
references.

 Another important feature of the ScriptManager is the ability to support local-
ization for languages and cultures. Let’s quickly examine how this works before
moving back to the existing ASP.NET application.

Listing 4.3 A ServiceReference, which provides a gateway to the service from JavaScript

124 CHAPTER 4

Exploring the Ajax server extensions
4.3.4 Localization

The process of supporting specific languages and cultures in an application is
commonly referred to as localization. You can also consider localization the act of
translating the interface. In ASP.NET, this is typically done by embedding localized
resources into an organized structure of assemblies, also known as satellite assem-
blies. The ASP.NET AJAX framework supports both this model and a more client-
centric model of using static JavaScript files on the server. Let’s explore both of
these occurrences to gain a general grasp of localization.

Localized script files
Localized JavaScript files are nothing more than files mapped to a specific cul-
ture. You create this mapping by including the name of the UI culture in the file-
name. For instance, a script file that is targeted for the Italian language could be
named SomeScript.it-IT.js. The it-IT stands for the well-known culture identifier of
the Italian language in Italy. Proceeding with this pattern, a French version of the
file could appropriately be named SomeScript.fr-FR.js, and our comrades in the
Ukraine could name their file SomeScript.uk-UA.js (you get the point).

 Rather than implementing logic that gets the current culture on the user’s
machine and loads the correct file accordingly, you can (and should) use the
ScriptManager control to do the work for you. The first step in configuring this is
to enable script localization:

<asp:ScriptManager ID="ScriptManager1" runat="server"
 EnableScriptLocalization="true">
</asp:ScriptManager>

Setting the EnableScriptLocalization property of the ScriptManager to true
forces the control to retrieve script files for the current culture, if they’re avail-
able. By default, this property is set to false, which means it doesn’t perform any
localization lookup for you. Consequently, if you now include a script reference
for SomeScript.js, intentionally omitting the culture name, the appropriate file
is downloaded:

<asp:ScriptManager ID="ScriptManager1" runat="server"
 EnableScriptLocalization="true">
 <Scripts>
 <asp:ScriptReference Path="SomeScript.js" />
 </Scripts>
</asp:ScriptManager>

To reiterate, if the UI culture on your machine were set to Italian, then Some-
Script.it-IT.js would be downloaded. Under the hood, the ScriptManager uses the

ScriptManager: the brains of an Ajax page 125
naming convention you just exposed to look for a match against the current cul-
ture. You can also force a specific culture by setting the ResourceUICultures
property in the ScriptReference:

<asp:ScriptReference Path="SomeScript.js"
 ResourceUICultures="it-IT" />

Pretty straightforward so far, but what about debug versions of your JavaScript
files? In section 2.1.3, you were introduced to the ScriptMode property, which
determines the version of a script file to load: release, debug, or auto (based on
configuration settings on the page or site). Luckily, the same applies to localized
scripts—if you had a debug version of the file called SomeScript.debug.it-IT.js, you
could load it explicitly by setting the ScriptMode property:

<asp:ScriptReference Path="SomeScript.js" ResourceUICultures="it-IT"
 ScriptMode="Debug" />

The result is that the debug version of the Italian resource is loaded. That’s all
there is to localization on static JavaScript files. Next, let’s see how loading script
resources from an assembly works with ASP.NET AJAX.

Using assembly resources
Packaging scripts and resources as embedded assets into an assembly is a common
technique that control developers use. This approach is popular primarily
because it simplifies how resources are deployed with the control.

 In order for a resource to be recognized by the ASP.NET AJAX framework, it
must be decorated with the WebResource attribute:

[assembly: WebResource("ControlNamespace.Control.js",
 "text/javascript")]

In this example, ControlNamespace represents the default namespace used in the
assembly. The remaining portion, Control.js, is the name of the resource.

 It’s highly recommended that the JavaScript file in the assembly not contain
any hard-coded string literals. Instead, it should look up values from a resource
file that follows the same naming conventions for the scripts. For example, you
could use a .NET resource file named Messages.it-IT.resx (or Messages.en-IE for
our Shillelagh-wielding friends in Ireland) to define strings for that culture. The
ASP.NET AJAX script loader automatically converts the .NET string resources into a
JavaScript object:

Messages={
"SayThankYou":"Grazie mille.",
"EnjoyMeal":"Buon appetito!"
};

126 CHAPTER 4

Exploring the Ajax server extensions
The logic on the client can then be UI culture-independent and reference the
string easily:

alert(Messages.SayThankYou);

This gives you a general understanding of how to use embedded scripts in a local-
ization context. The topic of how to embed resources into assemblies is slightly
out of the scope of this section; for more detailed information, see http://
msdn2.microsoft.com/en-us/library/ms227427.aspx.

 Most of the work of loading and managing localization is handled by the
ScriptManager, thus saving you a load of code and time. Using the ScriptManager
for localization also comes with additional benefits.

ScriptManager localization benefits
If your application supports multiple cultures, we strongly recommend loading
and leveraging the ScriptManager for localization support. Some of the benefits
of using the control include:

■ UI culture detection—When the EnableScriptLocalization property is
enabled, the ScriptManager detects and loads the appropriate script
resource for you.

■ Custom UI culture support—The ResourceUICultures property in the Script-
Reference object lets you override and determine which UI cultures are sup-
ported for a particular script.

■ Avoidance of indefinite caching—The ScriptManager employs a timestamp to
ensure that embedded scripts aren’t cached indefinitely by the browser.

■ Encrypted URLs to resources—As a security measure, the key that directs the
browser to the appropriate script is encrypted.

The ScriptManager makes localization very easy and includes an additional set of
features that make it an attractive solution for managing localization.

 You should now have a general idea of what the ScriptManager is capable of.
More instances of how and when it should be used are covered throughout the
book as we mentioned. Let’s get back to the application and make use of another
server control called the ScriptManagerProxy.

4.3.5 Using the ScriptManagerProxy

One and only one ScriptManager can exist on a page. Adding more than one
causes an InvalidOperationException to be raised at runtime. But in some situa-
tions, a content page may require a reference to a service or script that isn’t made

http://msdn2.microsoft.com/en-us/library/ms227427.aspx

Partial-page updates 127
by the ScriptManager in the parent or master page. The additional references
may also be required for only a single page and not for others. In these situations,
the ScriptManagerProxy control comes to the rescue.

 Suppose the customer has requested that you include a certain script on the
home page but not on any of the other pages on the site. Adding this script to the
master page would deploy it everywhere, which is the undesired result. Instead,
you can leverage the ScriptManagerProxy on the target page to ensure that it’s
included only there.

<asp:ScriptManagerProxy ID="ScriptManagerProxy1" runat="server">
 <Scripts>
 <asp:ScriptReference Path="~/scripts/DummyScript.js" />
 </Scripts>
</asp:ScriptManagerProxy>

Just like its parent control, the ScriptManagerProxy has a collection of script and
service references. Think of the ScriptManagerProxy as an extension of the
ScriptManager control: The influence and settings of the ScriptManager control
can be extended to content pages, user controls, and more. At runtime, the set-
tings are merged for each page accordingly.

 The key purpose of the ScriptManagerProxy is to add references that weren’t
included with the ScriptManager. This situation occurs most commonly when
you’re working with master pages.

 We’ve been laying the groundwork by adding support for the Ajax framework
and dropping in the ScriptManager control to deploy JavaScript files. Now we
can address those dreaded postbacks and start enhancing the overall user experi-
ence. We’ll return to the ScriptManager later in the chapter when we discuss
error handling.

4.4 Partial-page updates

Earlier in the chapter, we listed the goals for the existing application and men-
tioned that eliminating complete page refreshes from occurring would greatly
enhance the user experience. To reiterate, instead of updating the whole page all
at once, as in traditional ASP.NET applications, you should strive to update only
portions of the page—dynamically, without changing any of the application logic
if possible.

Listing 4.4 Using the ScriptManagerProxy control in a master-page scenario

128 CHAPTER 4

Exploring the Ajax server extensions
 In a conventional Ajax solution, when the UI and application logic reside on
the browser, you’re responsible for updating the UI with DHTML techniques and a
strong grasp of JavaScript. With the UpdatePanel control, the burden of this type
of development is abstracted away with all the heavy lifting done for you by the
server extensions. The best way to fully understand this is to see it in action.

4.4.1 Introducing the UpdatePanel control

The UpdatePanel is an Ajax-enabled server control that works closely with the
ScriptManager to apply partial-page updates to a page. Portions of the page
declared by the UpdatePanel can now be updated incrementally rather than as a
result of a page refresh. To demonstrate, let’s add the UpdatePanel control to the
existing application.

 The right column on the home page displays news about a selected genre.
Using a DropDownList control to display the available genres and a Repeater con-
trol to display news about the selected item, the controls work together to inform
the user about the latest relevant news. When the user selects a new item in the
drop-down list, a postback occurs, and the page is refreshed. Examining the
markup for the DropDownList explains this behavior.

 In listing 4.5, you can see that the AutoPostback property of the dropdown list
is set to True. As you can probably guess, this setting invokes the postbacks on each
selection change. During the postback, the server-side code processes the request
by looking up the selected genre and retrieving its relevant news. Listing 4.6 dem-
onstrates how the server code binds the Repeater control on the form with news
about the selected genre.

<asp:DropDownList ID="Genres" runat="server" AutoPostBack="True"
 OnSelectedIndexChanged="Genres_SelectedIndexChanged" >
 <asp:ListItem Text="Rock" Value="~/App_Data/RockFeed.xml"
 Selected="true" />
 <asp:ListItem Text="Jazz" Value="~/App_Data/JazzFeed.xml" />
 <asp:ListItem Text="Blues" Value="~/App_Data/BluesFeed.xml" />
</asp:DropDownList>

Listing 4.5 Selecting an item from the music genre list generates a postback to
 the server.

Partial-page updates 129
protected void Genres_SelectedIndexChanged(object sender,
 EventArgs e)
{
 UpdateGenre();
}

private void UpdateGenre()
{
 GenreSource.DataFile = Genres.SelectedValue;

 GenreNews.DataBind();
}

The Genres_SelectedIndexChanged method is invoked when the selected genre
is changed. It then calls the B private UpdateGenre method to C configure the
data source (in this case it’s an XML file that represents an RSS feed) and D
rebind the Repeater.

 Because each selection invokes a page refresh, the behavior in the browser
isn’t appealing to users. Technically, however, it makes a lot of sense. This pattern
is common in ASP.NET applications. The postback mechanism is frequently used
(and, unfortunately, often abused) to bridge the gap between what is displayed on
the UI and the logic on the server.

 If you add the UpdatePanel control, you can keep everything intact and
change the way it behaves for the user. The next time you run the site and select a
new genre, the news for a recently selected item is updated without a full-page
refresh. For clarity, the relevant source on the page is included in listing 4.7.

<asp:UpdatePanel ID="GenrePanel" runat="server">
 <ContentTemplate>
 <div class="columnheader">Music News:
 <asp:DropDownList ID="Genres" runat="server"
 AutoPostBack="True"
 OnSelectedIndexChanged="Genres_SelectedIndexChanged" >
 <asp:ListItem Text="Rock" Value="~/App_Data/RockFeed.xml"
 Selected="true" />
 <asp:ListItem Text="Jazz" Value="~/App_Data/JazzFeed.xml" />
 <asp:ListItem Text="Blues" Value="~/App_Data/BluesFeed.xml" />
 </asp:DropDownList>
 </div>

Listing 4.6 Selecting an item in the list updates the Repeater’s data source.

Listing 4.7 Dynamically updating regions during asynchronous postbacks

Call method to
update newsB

Update data
source

C

Bind to latest
data sourceD

130 CHAPTER 4

Exploring the Ajax server extensions
 <asp:Repeater ID="GenreNews" runat="server"
 DataSourceID="GenreSource" >
 <ItemTemplate>
 <div class="newshead">
 <asp:HyperLink ID="HyperLink1" runat="server"
 NavigateUrl='<%#XPath("link") %>'
 Text='<%#XPath("title") %>' />

 <asp:HyperLink ID="HyperLink2" runat="server"
 NavigateUrl='<%#XPath("link") %>' Text="[read more]" />
 </div>
 </ItemTemplate>
 </asp:Repeater>
 <hr />
 Last Updated: <%= DateTime.Now.ToLongTimeString() %>

 <asp:XmlDataSource ID="GenreSource" runat="server"
 DataFile="~/App_Data/RockFeed.xml" XPath="/rss/channel/item">
 </asp:XmlDataSource>

 </ContentTemplate>
</asp:UpdatePanel>

The ContentTemplate property of the UpdatePanel class defines the regions of
the page that are updated dynamically. This time, instead of a normal postback
that refreshes the entire page, a new type of postback is introduced: an asynchro-
nous postback. An asynchronous postback goes through the page lifecycle and
operates like a normal postback, minus the page refresh. This refreshing (pun
intended) news means the logic for the UI and application can remain intact.

 To demonstrate, let’s add code to detect when you’re in an asynchronous post-
back by asking the ScriptManager control for more information; see listing 4.8.

protected void Page_Load(object sender, EventArgs e)
{
 ScriptManager scriptManager = ScriptManager.GetCurrent(this.Page);

 if (scriptManager.IsInAsyncPostBack)
 {
 // We are doing something cool!
 }
}

Listing 4.8 During an asynchronous postback, the page goes through the normal
 page lifecycle.

Return instance of ScriptManager B

Check for asynchronous
postbackC

Partial-page updates 131
You first B retrieve an instance of the ScriptManager on the page by calling the
static method GetCurrent and passing in the parent page. Remember, you
declared the ScriptManager on the master page, not the content page, so this is
the best way to find and retrieve an instance of the ScriptManager when in a con-
tent page (or child control). An alternative would be to find the control in the
Controls collection of the master page, but this approach is ostensibly much sim-
pler—under the hood, it does the same thing.

 Next, you query the C IsInAsyncPostBack property of the ScriptManager to
determine if you’re in the process of handling a normal postback or an asynchro-
nous one. This offers you the option of coding custom logic for each occasion.

WARNING Adding an UpdatePanel to a page seems so effortless, and the rewards
are so great, that many developers entertain the idea of placing the con-
tents of an entire page in a single UpdatePanel. This practice is highly
discouraged. Although the illusion of Ajax is present, the cost of each
postback is significant, and the application’s overall performance will suf-
fer greatly over time. As a general rule, try to avoid such solutions, and
instead look for portions of the page that can be updated instead of the
entire page.

So far, so good—you’ve added a single UpdatePanel to the page and in the pro-
cess stopped a page refresh from happening each time the user selects a different
music genre. Let’s now place the focus on the other interactive portion of the site:
the feedback area.

4.4.2 More UpdatePanels

Adding multiple UpdatePanel controls to a page is not only supported but also
encouraged. Doing so means that more regions of the page can be updated
dynamically instead of each time a page refreshes. This approach also allows you
to take more control of which portions of the page are updated and which ones
aren’t, thus helping conserve the amount of data passed between the client and
server during each postback. To demonstrate, let’s add another UpdatePanel to
address the postbacks that come out of the page’s Recent Feedback section.

 Figure 4.4 captures Visual Studio’s Design view of the related controls before
adding the UpdatePanel. You see a GridView control that is used to display, sort,
and page through feedback items. Below the GridView is a DetailsView control
that is used to enter new feedback to the site.

 Each time the user attempts to sort, navigate to the next page of results, or add
feedback, a postback occurs. Because both controls invoke postbacks and are rela-
tively close to each other in the page layout, you can place a single UpdatePanel

132 CHAPTER 4

Exploring the Ajax server extensions
around both of them. After adding the UpdatePanel, the design view of the form
resembles figure 4.5.

 When you run the site once more, the page refreshes previously invoked from
interaction with the news and feedback sections are gone. It’s worth mentioning
again that postbacks still occur, but now they take place asynchronously and, as a
result, update the page incrementally, thus eliminating the flicker.

 Unfortunately, you aren’t done yet. As you hand over the site to the client for
testing, they notice a behavior that they deem undesirable. When a new feedback
item is entered, the contents of both UpdatePanel controls are updated instead
of just the one for recent feedback. In other words, when a user enters in a new

Figure 4.4
This snapshot is from the Design view in Visual
Studio; it shows the state of the controls before
adding Ajax support.

Figure 4.5
Adding the UpdatePanel around the GridView and
DetailsView controls replaces their traditional
postbacks with asynchronous postbacks.

Partial-page updates 133
feedback item or sorts one of the columns, the recent news about a genre (on
the right side of the page) also gets updated. You can confirm this by sorting a
column like Name on the GridView and watching the Last Updated time in the
right column change.

 The content of both UpdatePanel controls is updated because by default,
every time an asynchronous postback occurs on the page, regardless of which con-
trol on the page invoked the postback, an UpdatePanel updates its contents. To
solve this, all you need to do is set the UpdateMode property on both panels to
Conditional. Doing so tells the UpdatePanel to update its contents only if the
postback originates from within itself (from one of its child controls).

TIP The default value for the UpdateMode on UpdatePanel controls is Always.
However, this setting is rarely needed. A best practice is to always set the
mode to Conditional and let the Always condition present itself natu-
rally in your application. Doing so cuts back on the amount of data passed
between the server and client and ultimately increases the site’s perfor-
mance. There are limitations to both, which we’ll cover in chapters 6
and 7, dedicated to the UpdatePanel control.

This time, when you run the site again, only the contents of the UpdatePanel rela-
tive to the user interaction are updated.

 Let’s take a moment to recap. So far in the chapter, you’ve eliminated full-page
refreshes, you’ve cut back on the amount of data passed between the client and
server, and you’ve kept all the application and UI logic on the server intact. You’ve
also improved network latency and written no JavaScript code in the process! For
extra credit, if the browser had JavaScript disabled, the existing application would
continue to function, with normal postbacks and page refreshes—just as it did
before you made any updates.

 Because most of the initial goals have been met, and given that this is ulti-
mately all about the user experience, perhaps you can find other things to add to
the site that add more value and interactivity for the user.

4.4.3 Insert feedback here

Adding the UpdatePanel controls to the site radically improves the behavior and
overall feel for users. They’re spared a page refresh when they interact with the
controls, which is a tremendous improvement from the intermittent nature you
had before. But as a side effect of this achievement, the user isn’t given any indica-
tion that something is being updated until it has happened.

134 CHAPTER 4

Exploring the Ajax server extensions
 Imagine (for the sake of this example) that the source used to retrieve infor-
mation about a music genre comes from an external RSS feed. This scenario intro-
duces the possibility of slow responses when retrieving a news feed, which means
partial-page updates may not happen immediately—and may not happen for
quite a while. Previously, the page refresh was an indication that something was
happening and that eventually the page would be updated. With partial-page
updates, the user is given no visual cue that their actions have been accepted and
that work is being done on the other end.

 Fortunately, in chapter 1, we introduced the UpdateProgress control as a solu-
tion for this problem. You’ll use the control again here to notify the user that
you’re retrieving news about the selected genre. Listing 4.9 shows the insertion of
the UpdateProgress control on the page, right before the Repeater control that
displays the recent news.

<asp:UpdateProgress ID="UpdatingNews" runat="server"
 AssociatedUpdatePanelID="GenrePanel" >
 <ProgressTemplate>

 Loading ...
 </ProgressTemplate>
</asp:UpdateProgress>

First, you’d prefer to display the contents of the UpdateProgress control only
when news about a genre is being retrieved, and not when other UpdatePanel
controls are being updated. To accomplish this, you set the B AssociatedUp-
datePanelID property to the ID of the UpdatePanel associated with the music
news. This lets you have multiple UpdateProgress controls on a single page and
gives you added control over how the page is rendered during an asynchronous
postback. The UpdateProgress control has a C ProgressTemplate property that
encapsulates what is to be displayed during an asynchronous postback. For this
instance, you use an animated GIF image and some informative text.

 Now, when you select a new item from the drop-down list, a subtle but informa-
tive message is presented while the data is retrieved. Figure 4.6 displays the
UpdateProgress control in action.

Listing 4.9 Displaying the UpdateProgress control when the UpdatePanel’s contents
 are being updated

Assign to specific
UpdatePanelB

Displayed during
postback

C

Partial-page updates 135
TIP It’s easy to get carried away with Loading messages. In general, you should
try to inform the user with a subtle and informative message that is rele-
vant to the portion of the page being updated. Unless the entire page is
being updated, it’s usually more considerate and less intrusive to use
smaller, useful icons and text to relay messages to the user. Gratuitous
messages can have a negative effect on the overall user experience and
should generally be avoided.

You’re almost finished with the server-extension controls. You’ve used every one
of them except the Timer control, which, when used effectively, can complement
the UpdatePanel control and give you the ability to apply partial-page updates at
set intervals.

4.4.4 Working with a timer

Included in the Ajax server extensions is a control called the Timer. As its name
implies, the control creates a timer on the client that invokes a postback at an
interval you specify (in milliseconds). For the existing application, you’ll use the
Timer control in conjunction with the UpdatePanel to retrieve and display the lat-
est news about the selected genre. Because news about a genre can change often,
this subtle addition adds a little extra value to the site because it keeps the user’s
attention. Listing 4.10 shows how to declare the Timer control on the page.

<asp:Timer ID="NewsTimer" runat="server" Interval="10000"
 OnTick="UpdateNews" />

Listing 4.10 The Timer runs in the client and invokes a postback at each interval.

Figure 4.6 The UpdateProgress control offers a simple and useful tool
for keeping the user informed about asynchronous updates on the page.

136 CHAPTER 4

Exploring the Ajax server extensions
The declaration sets the interval to 10 seconds (or rather, its equivalent, 10000
milliseconds) and also assigns an UpdateNews handler to the OnTick event. Nor-
mally, this would be too frequent of an interval for news updates—we use it here
for demonstration purposes only. Also, for reasons we’re about to discuss, you
place the Timer control outside the UpdatePanel instead of in the ContentTem-
plate declaration, as in previous examples.

TIP It’s important to understand that the ticks for the Timer happen on the
browser, not the server. Using this control requires you to be mindful of
the system resources on the end user’s machine. In general, set the con-
trol’s interval to the highest value possible. Setting the interval value to
too short an amount may put too much strain on the system and cause
unpredictable behavior.

To accompany the declarative code, the server-side code calls the same Update-
Genre method used earlier to update the interface. Listing 4.11 shows the code-
behind for the Tick event handler.

protected void UpdateNews(object sender, EventArgs e)
{
 UpdateGenre();
}

private void UpdateGenre()
{
 GenreSource.DataFile = Genres.SelectedValue;
 GenreNews.DataBind();
}

Because the Timer control isn’t encapsulated by the UpdatePanel, each interval
that invokes a postback causes the page to refresh. This happens because the
UpdatePanel hasn’t been made aware that you’d like to use the Tick event of the
Timer control to invoke an asynchronous postback. To resolve this, you register
the Tick event with the UpdatePanel by adding the event to the control’s Trig-
gers collection. The next time you run the application, you’ll notice that the Last
Updated time is incremented at each interval.

 Listing 4.12 shows the entire contents of the music genre section as well as the
declaration of the Timer control at the end.

Listing 4.11 The Tick event, which calls the private UpdateGenre method

Partial-page updates 137
<asp:UpdatePanel ID="GenrePanel" runat="server"
 UpdateMode="Conditional">
 <ContentTemplate>
 <div class="columnheader">Music News:
 <asp:DropDownList ID="Genres" runat="server"
 AutoPostBack="True"
 OnSelectedIndexChanged="Genres_SelectedIndexChanged" >
 <asp:ListItem Text="Rock" Value="~/App_Data/RockFeed.xml"
 Selected="true" />
 <asp:ListItem Text="Jazz" Value="~/App_Data/JazzFeed.xml" />
 <asp:ListItem Text="Blues" Value="~/App_Data/BluesFeed.xml" />
 </asp:DropDownList>
 </div>

 <asp:UpdateProgress ID="UpdatingNews" runat="server"
 AssociatedUpdatePanelID="GenrePanel" >
 <ProgressTemplate>
 Loading ...
 </ProgressTemplate>
 </asp:UpdateProgress>

 <asp:Repeater ID="GenreNews" runat="server"
 DataSourceID="GenreSource" >
 <ItemTemplate>
 <div class="newshead">
 <asp:HyperLink ID="HyperLink1" runat="server"
 NavigateUrl='<%#XPath("link") %>'
 Text='<%#XPath("title") %>' />

 <asp:HyperLink ID="HyperLink2" runat="server"
 NavigateUrl='<%#XPath("link") %>' Text="[read more]" />
 </div>
 </ItemTemplate>
 </asp:Repeater>
 <hr />
 Last Updated: <%= DateTime.Now.ToLongTimeString() %>

 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="NewsTimer"
 EventName="Tick" />
 </Triggers>
</asp:UpdatePanel>

<asp:Timer ID="NewsTimer" runat="server" Interval="10000"
 OnTick="UpdateNews" />

Listing 4.12 Registering the Timer control’s Tick event to ensure asynchronous
 postbacks

Register async
postback Postback

every 10
seconds

138 CHAPTER 4

Exploring the Ajax server extensions
You’ve now used every control in the Ajax server extensions, and the result is an
application that is far more engaging and responsive than when you started.
Along the way, you picked up a collection of best practices for getting the most
out of the extensions, and you also got a glimpse into how the ScriptManager
works under the hood.

 But you’re not done yet. Even the best applications contain errors or raise
exceptions.

4.4.5 Error handling

Things have been working smoothly so far, but in the real world, errors and
exceptions occur. To wrap up this chapter, let’s examine what you have at your dis-
posal to make handling these occurrences more manageable. Listing 4.13 shows a
snippet of code that purposely throws an exception after the user has selected a
new music genre from the drop-down list.

protected void Genres_SelectedIndexChanged(object sender,
 EventArgs e)
{
 UpdateGenre();
 throw new Exception("Look out!");
}

Earlier, you set the AutoPostBack property of this con-
trol to true and also placed it in an UpdatePanel. This
means the postback that originates from here is asyn-
chronous, also known as an Ajax postback. Typically,
depending on the settings of the web.config file, an
error during a normal postback results in the stack
trace and error information being shown on the screen.
This time, the browser relays the exception information
in a dialog box (see figure 4.7).

 This result can be informative for developers, but
displaying the same message from the exception back
to the user isn’t always the best idea. Fortunately, the
ScriptManager control throws an event called AsyncPostBackError that provides
you with an opportunity to update the text in the dialog box before it’s presented
to the user. Listing 4.14 demonstrates how a handler for the event is registered
and the message updated before reaching the user.

Listing 4.13 Throwing an exception to see how the page handles it

Figure 4.7 By default,
exceptions that occur during
asynchronous postbacks are
displayed in alert dialogs.

Partial-page updates 139
protected void Page_Load(object sender, EventArgs e)
{
 ScriptManager scriptManager = ScriptManager.GetCurrent(this.Page);
 scriptManager.AsyncPostBackError += new
 EventHandler<AsyncPostBackErrorEventArgs>(OnAsyncPostBackError);
}

void OnAsyncPostBackError(object sender,
 AsyncPostBackErrorEventArgs e)
{
 ScriptManager.GetCurrent(this.Page).AsyncPostBackErrorMessage =
 "We're sorry, an unexpected error has occurred.";
}

Now, when you select another music
genre from the list, you’re presented
with a message box that contains the
custom message instead of the one
coming from the exception.

 Even with the custom error mes-
sage, it’s still considered a best practice
to provide a default error page for a
website rather than display an alert dia-
log or stack trace to the user. This way,
when an exception occurs, the user is redirected to a friendly page that is infor-
mative and useful. The mechanism for handling errors is configurable in the cus-
tomErrors section of web.config:

<system.web>
 <customErrors mode="On|Off|RemoteOnly"
 defaultRedirect="ErrorPage.aspx">
 ...
 </customErrors>

The mode property of the customErrors section governs how error messages are to
be handled. When this property is set to On, the user is redirected to the error page
defined in the defaultRedirect property. The Off setting always shows the stack
trace—or, in this case, the dialog box with the error message. The RemoteOnly
value redirects the user to the error page only if they’re on a remote machine; oth-
erwise, the same behavior used for the Off setting is applied. Due to its flexibility,

Listing 4.14 Raising the AsyncPostBackError event before the dialog is displayed
 to the user

Figure 4.8 You can change the error message
during the AsyncPostBackError event.

140 CHAPTER 4

Exploring the Ajax server extensions
the RemoteOnly setting is the most appropriate for developers who wish to debug
applications locally and view details about exceptions as they occur.

 The ScriptManager control provides a property for overriding this mechanism.
By default, the AllowCustomErrorsRedirect property is set to true. This setting
honors the values set in the customErrors section. Setting this property to false
forces the dialog to appear when exceptions occur (see listing 4.15).

protected void Page_Load(object sender, EventArgs e)
{
 ScriptManager scriptManager = ScriptManager.GetCurrent(this.Page);
 ...
 scriptManager.AllowCustomErrorsRedirect = false;
}

The AllowCustomErrorsRedirect value must be set on or before the Load event
in the ASP.NET page lifecycle. Doing so afterward has no affect on the settings
configured in the customErrors section. Chapter 7 will show you how to handle
errors more elegantly when we examine the events that occur on the client side
during asynchronous postbacks.

 For now, the lesson is this: always provide a general error page for users. If you
have to show the user a dialog box during an exception, handle the AsyncPost-
BackError event to display a friendly and user-centric message as opposed to the
message from the exception itself.

4.5 Summary

We began this chapter by presenting an alternative to client-side Ajax develop-
ment. Using the Ajax server extensions, ASP.NET developers can simulate Ajax
behavior in the browser. Sometimes a client-centric Ajax solution isn’t appropriate
for a site. In these cases, you can still use a server-centric solution that leverages
these new controls to improve the user experience. In many situations, using both
approaches makes sense.

 The next chapter will round out your understanding of the core ASP.NET AJAX
framework by examining how asynchronous calls are made from the browser. It
will also pick up where we left off with the server extensions by exposing how you
can use the authentication and profile services in ASP.NET from client script.

Listing 4.15 The AllowCustomErrorsRedirect property overrides the web.config
 settings.

Making asynchronous
network calls
In this chapter:
■ Working with Web Services
■ Simple HTTP requests
■ ASP.NET application services
■ Bridges
■ Creating simple mashups
141

142 CHAPTER 5

Making asynchronous network calls
At the heart of Ajax programming is the ability to make asynchronous calls from
the browser to the server. Establishing this dialogue eliminates the need for the
browser to reload as a result of each request or user interaction. Instead, relevant
data can be exchanged in the background while updates to the page are applied
incrementally from the browser. Web pages that leverage this technique remain
responsive, and the user experience is greatly improved.

 In chapter 1, you got a glimpse into how this type of programming works with
ASP.NET AJAX—we called this approach the client-centric development model. This
model grants you more control over the application by moving the logic from the
server into the browser. This shift from traditional ASP.NET development means the
server is primarily used for data rather than application logic and data together.

 This chapter will explain how you can make asynchronous network calls from
JavaScript using the ASP.NET AJAX framework. We’ll explore the Microsoft Ajax
Library classes that make asynchronous communication possible. In addition, we’ll
unveil how to make calls to ASP.NET Web Services, both local and external, from cli-
ent-side script. Let’s begin with what will be the most likely scenario you’ll leverage
when making asynchronous calls: working with ASP.NET Web Services.

5.1 Working with ASP.NET Web Services

A website is a perfect example of the client/server architecture. Each instance of a
browser (the client) can send requests to a server for data and content. When the
client initiates a request to a known remote server to execute a procedure or sub-
routine, it’s often called a remote procedure call (RPC). Working closely with ASP.NET
Web Services, the ASP.NET AJAX framework significantly simplifies the effort it
takes to execute RPC patterns from JavaScript. In simpler terms, the framework
makes it easy for you to communicate with Web Services from JavaScript.

 Before we dive into working with Web Services, let’s take a few moments to
explain how communicating with RPC services works and how these services differ
from another style called Representation State Transfer (REST).

 You communicate with an RPC service using commands defined through
methods. This is similar to how you interact with a normal object from a library.
For example, suppose an RPC application defines a method called GetStoreSpe-
cials. A consumer of that service can then communicate with it like so:

storeService = new StoreService("aspnetajaxinaction.com:42");
storeService.GetStoreSpecials();

REST services expose their communication endpoints slightly differently. They
expose objects as resources or nouns, which have more of an emphasis on diver-
sity. For the same functionality, a REST service typically offers a resource this way:

Working with ASP.NET Web Services 143
http://ajaxinaction.com/specials/. A caller in this scenario then accesses the
application in a fashion similar to this:

storeResource = new StoreResource("http://ajaxinaction/specials/");
storeResource.GetStoreSpecials();

We’re giving you this overview of these two service models to provide the context
in which communication works in ASP.NET AJAX. As we walk through the first set
of examples, you’ll notice how you declare and work with RPC-like services for
applications. It’s interesting to note that under the hood, the communication
layer in the framework is implemented with REST-like patterns. More of this will
make sense as we proceed.

NOTE An entire book could be dedicated to topics such as REST and RPC ser-
vices. We provide a brief introduction here, but it’s in no way a thorough
explanation. For more information about REST services, see http://
rest.blueoxen.net/cgi-bin/wiki.pl?FrontPage. You can find a helpful
resource about RPC here: http://www.cs.cf.ac.uk/Dave/C/node33.html.

Let’s get into some code and begin working with the framework. We’ll start with a
simple web service that you can expose to the client-side script.

5.1.1 Configuring a web service

Let’s start with a clean slate and create a new Ajax-enabled website from Visual
Studio (see chapter 1 for an example). Selecting this option updates the web.con-
fig file with all the settings and references you need to get going. The next step is
to add a local web service to the site. You can accomplish this by choosing the Web
Service option in the Add New Item dialog (see figure 5.1).

 To keep everything in one place and for clarity, deselect the Place Code in Sep-
arate File option. Building on the Starbucks example in chapter 1 (more on this
soon), you’ll name the service StarbucksService.asmx. You’ll target this service
from the client to retrieve relevant data in the examples.

Starbucks revisited
Earlier, we explained the nature of asynchronous operations by telling a story of
ordering a beverage from a coffee shop. In brief, we associated placing an order
at the shop with making a request to a service. We then likened the processing of
that order to an asynchronous operation in which, due to its nature, we were
informed of the operation’s status and completion at another time. For the
remainder of this section, we’ll use this tale as the premise for the examples. If
you aren’t familiar with how an asynchronous operation behaves, please take a
moment to visit the story in chapter 1 for a high-level explanation.

http://www.cs.cf.ac.uk/Dave/C/node33.html
http://rest.blueoxen.net/cgi-bin/wiki.pl?FrontPage
http://rest.blueoxen.net/cgi-bin/wiki.pl?FrontPage
http://rest.blueoxen.net/cgi-bin/wiki.pl?FrontPage

144 CHAPTER 5

Making asynchronous network calls
Listing 5.1 shows the beginnings of this service and how it’s exposed to the client-
side script.

<%@ WebService Language="C#"
 Class="AspNetAjaxInAction.StarbucksService" %>

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Web.Script.Services;

namespace AspNetAjaxInAction
{
 [ScriptService]
 [WebService(Namespace = "http://aspnetajaxinaction.com/")]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 public class StarbucksService : System.Web.Services.WebService
 {

 [WebMethod]

Listing 5.1 Configuring a web service for client-script interaction with a few attributes

Figure 5.1 Use the Add New Item dialog to add a web service to the site.

Namespace for
script services

B

Ajax-enabled
service

C

Working with ASP.NET Web Services 145
 public int GetLocationCount(int zipCode)
 {
 int locations = 0;
 switch (zipCode)
 {
 case 92618:
 locations = 148;
 break;

 case 90623:
 locations = 3;
 break;

 case 90017:
 locations = 29;
 break;

 default:
 break;
 }

 return locations;
 }

 }
}

Exposing a web service to the client in ASP.NET AJAX is done with a few simple
steps. The first step, which isn’t required, is to include the B namespace for the
script services in the framework. This serves as a shortcut so you don’t have to fully
qualify each attribute and type used from the library. Next, you must decorate the
class for the service with the C ScriptService attribute, defined in the Sys-
tem.Web.Script.Services namespace. The service and its web methods are now
ready for remote calls from the browser.

 Currently, the service contains only one method: D GetLocationCount, which
returns the number of stores in a specified ZIP code. Because this is strictly demo
code, we hard-coded a few examples and values in order to get results to experi-
ment with.

NOTE The 1.0 release of the ASP.NET AJAX framework doesn’t support integra-
tion with Windows Communication Foundation (WCF). In earlier Com-
munity Technology Previews (CTPs), when the project was known by the
codename Atlas, WCF integration was supported experimentally. In the
next version of the .NET Framework, currently codenamed Orcas, WCF
support will return.

Exposed web
methodD

146 CHAPTER 5

Making asynchronous network calls
To validate your work so far, open a browser window and direct it to the service’s
.asmx file. As expected, you see the generated summary page that you’ve become
accustomed to with normal ASP.NET Web Services. Figure 5.2 shows the summary
page and the single method it currently exposes.

 Everything appears normal so far, but this isn’t your typical web service. If you
append /js to the end of the URL, such as http://www.samplewebsite.com/sam-
pleservice.asmx/js, then instead of seeing the friendly generated page for the ser-
vice, you’re presented with JavaScript content that represents the client-side proxy
for this service. (Firefox displays the script in the page, and Internet Explorer 7
prompts you to save the contents into a local file.) We’ll dig deeper into how this
is made possible soon. The important thing to remember right now is that you get
a set of JavaScript functions that you can leverage to call the web methods from
the script. This JavaScript code, or proxy, is also known as a web service proxy.

 The next logical step is to add a page to the site that interacts with this service.

5.1.2 Invoking web service methods from JavaScript

The first step in Ajax-enabling a page is to add the ScriptManager control.
Remember, the ScriptManager is the brains of an Ajax page because its responsi-
bilities primarily include managing and deploying scripts to the browser. In this
case, you want to leverage the ScriptManager so the page can use the web service
proxy you just generated. Listing 5.2 shows how adding a reference to the local
Web Service makes this possible.

Figure 5.2 The generated page for an ASP.NET web service gives a summary of its public methods
and a link to the service description.

Working with ASP.NET Web Services 147
<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="~/StarbucksService.asmx"
 InlineScript="true" />
 </Services>
</asp:ScriptManager>

The Services property of the ScriptManager contains a collection of ServiceRef-
erence objects. A ServiceReference is a reference to a local service on the site.
Adding this reference informs the ScriptManager that you would like to include
the web service proxy from the service on the page.

 The Path for the service reference is set to the .asmx file on the site. By default,
the InlineScript property of the reference is set to false. However, in this case
it’s set to true to demonstrate how the web service proxy will be downloaded, in
the page, to the browser. When set to false, the JavaScript for the proxy is instead
downloaded to the browser separately.

 Using a debugging tool called Firebug (see appendix B for details) from the
Firefox browser, you can see the client-side proxy generated for the page (see fig-
ure 5.3).

Listing 5.2 Adding a service reference to the ScriptManager control

Figure 5.3 Firebug shows a glimpse of the client-side proxy that is included in
the page for calling the web methods in the service.

148 CHAPTER 5

Making asynchronous network calls
Now that the infrastructure is in place, you can begin making calls to the service.
To invoke the single method in the service, add a text box and button to the page
to provide the user with an interface for passing in data. The markup portion for
this example is presented in listing 5.3.

<div>
 <input id="Location" type="text" />
 <input id="GetNumLocations" type="button" value="Get Count"
 onclick="getLocations()" />
 <div id="NumLocations"></div>
</div>

Notice how the onclick event for the button is assigned to the JavaScript function
getLocations. In this function, you read the value from the text box and pass it
along to the web method.

Calling a web method
Making a web method call from JavaScript is similar to calling a method from a
library in .NET, except for a few differences that we’re about to uncover. Listing 5.4
demonstrates how you make the call to the service for retrieving the number of loca-
tions in a ZIP code.

function getLocations(){
 var zip = $get("Location").value;
 AspNetAjaxInAction.StarbucksService.GetLocationCount(zip,
 onGetLocationSuccess,
 onGetLocationFailure,
 "<%= DateTime.Now %>");
}

Prefixed with the namespace and then the name of the service, StarbucksSer-
vice, a call to the GetLocationCount method defined in the .asmx file is
invoked along with a few extra parameters. Let’s carefully examine each of these
extra parameters.

Listing 5.3 Text box and button to provide an interface for passing parameters to
 the service

Listing 5.4 Calling a web method from JavaScript

Working with ASP.NET Web Services 149
Web method parameters
Passed in to the first parameter is the value in the text box that you retrieved by
calling $get("Location").value in the previous line. The second parameter is
the name of the callback function, onGetLocationSuccess, which informs you
when the method has successfully completed. Optionally, passed in to the third
parameter is the name of another callback function that is invoked if anything
goes wrong during the processing of the request. This can include a timeout on
the request, loss of connectivity, and a number of other possibilities.

 The last parameter provides a mechanism for passing along user context that
can be retrieved from either of the callback functions. This example passes in the
current time, but any JavaScript object will do. The Microsoft Ajax Library main-
tains this context for you on the client so that it’s conveniently available later
when the callbacks are invoked. After the call is made, you wait for either callback
function to be invoked.

Callbacks
When the call successfully completes, the function you specified—onGetLoca-
tionSuccess—is called, and you can update the page with its return value:

function onGetLocationSuccess(result, context, methodName){
 $get("NumLocations").innerHTML = result + " location(s) found.";
}

Three parameters are passed in to the callback function. The first, often called
the result parameter, returns the results of the web method. For this example, it’s an
integer that signifies the number of store locations in the ZIP code. The second
parameter is the user context you optionally passed in when you called the
method. The last parameter contains the name of the client-side method that ini-
tiated this callback. Because the same callback function can be used for different
method calls (doing so is common), this parameter can be handy for determining
where the call originated and applying additional custom logic.

 Everything is straightforward so far, but what happens when an error occurs on
the server or the call fails to return successfully due to network complications? In
this scenario, the second callback function, onGetLocationFailure, is called:

function onGetLocationFailure(error, context, methodName){
 var errorMessage = error.get_message();
 $get("NumLocations").innerHTML = errorMessage;
}

Inspecting the parameters in the callback, notice that the second and third items
are the same as in the successful callback routine earlier. The difference this time
is the result parameter (the first parameter), which returns an error object. For

150 CHAPTER 5

Making asynchronous network calls
this occasion, you can retrieve the error message by calling error.get_message()
to update the UI accordingly.

 The last thing we’ll touch on to round off your basic understanding of making
JavaScript calls to services is the issue of timeouts.

Timeouts
When you’re calling a web service proxy from JavaScript, you sometimes have to
take into consideration the amount of time it takes for a request to process. In
some cases, you want the call to return immediately, so adjusting the timeout for a
shorter interval is preferable. In other instances, a longer timeout that grants the
server sufficient time to process the request is better suited. The client-side prox-
ies in ASP.NET AJAX expose a property called timeout, which allows you to adjust
the interval in milliseconds:

AspNetAjaxInAction.StarbucksService.set_timeout(1000);

If a response isn’t received before the timeout elapses, an exception is generated
on the client and the failure callback function is invoked. The error object passed
to the callback contains the client-generated exception for a timeout. We’ll dis-
cuss how to handle errors in a moment.

So far, we’ve covered the basics of working with ASP.NET Web Services. We have a
lot more to cover, especially relating to working with complex types.

5.1.3 Managing complex types

We’ve walked through the simplest scenario possible when working with ASP.NET
Web Services: calling a method that returns an integer. But applications work with
more complex, custom types that closely resemble entities in the real world. In this

Timeout considerations
Determining the right timeout interval can be tricky. Ideally, you want to provide
the user with feedback as soon as possible, which means short timeouts are pre-
ferred. You may want to consider reissuing the request if it initially fails. On the
other hand, you want to give the Web Service adequate time to process the re-
quest. This time can vary between services and can depend on how busy the ser-
vice is. Sometimes, it’s beneficial to implement a more complex algorithm that
issues a short timeout at first and then adjusts itself with a slightly longer time-
out interval the next time. You may have to manage and refine the timeout inter-
val for processing a request when you’re working with complex scenarios.

Working with ASP.NET Web Services 151
section, we’ll work with these complex types and walk through a series of exercises
to demonstrate how you can access them and instantiate them in the script.

You’re hired!
With the help of a good book (wink), word around town is that you’ve become
quite the Ajax developer. Management of a well-known coffee shop has asked you
to update some of their Web Services so their developers can add more interac-
tion to the company’s home page. Your first task is to add a web method that
returns the latest deals on the most popular beverages.

 You begin by creating a server-side object called Beverage. Keeping things sim-
ple, the object has only a few properties: a name, a description, and a cost.
Included in the class’s implementation is an overloaded constructor that initial-
izes the object with the passed-in properties. Listing 5.5 shows the implementation
for this custom type.

using System;

namespace AspNetAjaxInAction
{
 public class Beverage
 {
 public Beverage()
 { }

 public Beverage(string name, string desc, double cost)
 {
 this.name = name;
 this.description = desc;
 this.cost = cost;
 }

 private string name;
 public string Name
 {
 get { return this name; }
 set { this.name = value; }
 }

 private string description;
 public string Description
 {
 get { return this description; }
 set { this.description = value; }
 }

Listing 5.5 Implementation of a custom Beverage class

152 CHAPTER 5

Making asynchronous network calls
 private double cost;
 public double Cost
 {
 get { return this.cost; }
 set { this.cost = value; }
 }

 }
}

Next, you add to the Web Service a method called GetDeals, which returns a col-
lection of beverages (see listing 5.6).

using System.Collections.Generic;
...
[WebMethod]
public List<Beverage> GetDeals()
{
 List<Beverage> beverages = new List<Beverage>();

 // Hard-coded for testing
 Beverage b1 = new Beverage("House Blend",
 "Our most popular coffee",
 2.49);

 Beverage b2 = new Beverage("French Roast",
 "Dark, bold flavor",
 2.99);

 beverages.Add(b1);
 beverages.Add(b2);
 return beverages;
}

Let’s examine the newly added GetDeals method. Notice how you import the
System.Collection.Generic namespace at the top. You do this because you’d
like to use Generics (a .NET 2.0 feature that is similar to templates in C++) in the
return type as opposed to a normal array. On the client side, this doesn’t matter,
because it’s serialized into an array anyway. On the server side, however, Generics
provides an easy way to manage typesafe lists.

Listing 5.6 Implementation for the GetDeals method

Working with ASP.NET Web Services 153
NOTE Generics aren’t required for this solution; you can just as easily set the
method to return an array of the Beverage type (Beverage[]). But
unless you’re targeting both .NET 1.1 and .NET 2.0, you should take
advantage of Generics when possible. If you aren’t familiar with Generics,
devoting some time to learning about its benefits would be a worthwhile
investment. For C#, see http://msdn2.microsoft.com/en-us/library/
ms379564(vs.80).aspx. For VB.NET, see http://msdn2.microsoft.com/en-
us/library/ms379608(vs.80).aspx.

A close look at the implementation of the method reveals that a hard-coded list of
beverages is created and returned to the caller. The question now is, how can the
client-side script handle this new type?

 By default, the ASP.NET Web Services used by the Ajax framework use the JSON
(see chapter 3) data format for the transfer of data between the client and server.
This means the value is first serialized with a JSON serializer before it’s written in
the response’s payload. One of the key reasons JSON is used is because of its natu-
ral integration with JavaScript and its lightweight nature. (You can convert JSON
into a JavaScript object by passing it into the eval method.)

 When the result reaches the callback in the JavaScript code, you’re given an
object that you can manipulate and work with like a normal .NET object. To dem-
onstrate, let’s put this all together by calling the GetDeals method from JavaScript
(see listing 5.7).

<div>
 <input id="GetDeals" type="button" value="Get Deals"
 onclick="getDeals()" />
 <div id="Deals"></div>
</div>
...

function getDeals(){
 AspNetAjaxInAction.StarbucksService.GetDeals(onGetDealsSuccess,
 onGetDealsFailure);
}

function onGetDealsSuccess(result, context, methodName){
 var sb = new Sys.StringBuilder();
 for (var i = 0; i < result.length; i++){
 var bev = result[i];
 sb.append(bev.Name + " - ");
 sb.append(bev.Description + " - ");
 sb.append(bev.Cost + "
");
 }

Listing 5.7 Calling and handling from JavaScript a web method that returns
 a complex type

Retrieve deals B

Instantiate
StringBuilder

C

Declare
properties

D

http://msdn2.microsoft.com/en-us/library/ms379608(vs.80).aspx
http://msdn2.microsoft.com/en-us/library/ms379608(vs.80).aspx
http://msdn2.microsoft.com/en-us/library/ms379564(vs.80).aspx
http://msdn2.microsoft.com/en-us/library/ms379564(vs.80).aspx
http://msdn2.microsoft.com/en-us/library/ms379564(vs.80).aspx

154 CHAPTER 5

Making asynchronous network calls
 $get("Deals").innerHTML = sb.toString();
}

function onGetDealsFailure(error, context, methodName){
 $get("Deals").innerHTML = error.get_message();
}

Listing 5.7 begins with the declaration of a button on the form that you use to
kick off the request in a function called getDeals. From there, you call the B
GetDeals method on the server and assign callback functions for both success
and failure scenarios.

 If the call returns successfully, you instantiate an instance of the client C
StringBuilder object and format the result. Notice how the D properties you
declared in the server class (Name, Description, and Cost) are accessed from the
script to format the message. All the work of serializing and deserializing the
object is transparent to you, and you didn’t have to do anything extra to introduce
the new object into the proxies.

NOTE As soon as the browser receives the response, the Microsoft Ajax runtime
processes it and uses the client-side serializer (the Sys.Serializa-
tion.JavaScriptSerializer class) to deserialize the JSON sent by the
server. The runtime then invokes the callback that you set to process the
results. This lets you access and work with the result as an object, like the
one defined on the server.

Let’s look at the output. Figure 5.4 demonstrates the results of your efforts up to
now.

Figure 5.4 A snapshot of what you’ve built so far: calls to two Web Service methods,
one that returns a simple type and another that returns a collection of a custom type

Working with ASP.NET Web Services 155
If you insert a call to Sys.Debug.traceDump(result) from the callback function
for the GetDeals method, you can use the Firebug tool to inspect what comes
back from the server (see figure 5.5).

 More details about debugging and using tools such as Firebug and Web Devel-
oper Helper are provided in appendix B. We encourage you to become familiar with
these tools and leverage them when you’re authoring rich-client applications.

Creating server types on the client
The client is thrilled with your work so far, particularly the way the object you
defined on the server can be used seamlessly in the browser as well. This
prompts them to ask if it’s possible to instantiate an instance of a server-side class
from the client.

 Because the Beverage type is used in the service’s GetDeals method, the client
proxies already include a definition for it. This happens when the proxies are gen-
erated and the type is resolved by the Ajax runtime. Creating and initializing an
instance of the Beverage type from JavaScript looks similar to how you would do
this in .NET code:

var bev = new AspNetAjaxInAction.Beverage();
bev.Name = "Holiday Blend";
bev.Description = "A warm and spicy blend.";
bev.Cost = "2.55";

Figure 5.5 Using Firebug for Firefox, this snapshot shows the contents of what is
being returned by the server.

156 CHAPTER 5

Making asynchronous network calls
What about classes that aren’t used in the Web Service? In some cases, the client
would like to use the same class they defined on the server, in the browser as well.
It seems redundant to have to define the same object in JavaScript because it isn’t
used by the service.

 To demonstrate how you can resolve this situation, let’s create another class on
the server called Employee. For simplicity, this class also has three basic properties:
first name, last name, and title. Listing 5.8 shows the implementation for the class.

using System;

namespace AspNetAjaxInAction
{
 public class Employee
 {
 public Employee()
 {

 }

 private string first;
 public string First
 {
 get { return this.first; }
 set { this.first = value; }
 }

 private string last;
 public string Last
 {
 get { return this.last; }
 set { this.last = value; }
 }

 private string title;
 public string Title
 {
 get { return this.title; }
 set { this.title = value; }
 }
 }
}

The goal is to instantiate and update the object in JavaScript as you did with the
Beverage object previously. Because the class hasn’t been used in any method

Listing 5.8 The Employee class: another complex type defined on the server

Working with ASP.NET Web Services 157
calls, the Web Service isn’t aware that you’d like to include this class in the prox-
ies. To enlighten the Web Service about your intentions, you can leverage the
GenerateScriptType tag. If you apply this tag to the Web Service class, along with
the type of class you’d like to include, it too will be supported in the web service
proxy. Listing 5.9 shows how the Web Service class is updated with the script-type
declaration of the Employee class.

[ScriptService]
[GenerateScriptType(typeof(Employee))]
[WebService(Namespace = "http://aspnetajaxinaction.com/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class StarbucksService : System.Web.Services.WebService
{
 ...

This is all you need to do to provide support for instantiating a server-side object
on the client. To prove that this class can be created and manipulated from Java-
Script, add the following lines of markup and script to the page:

<hr />
<div>
<input id="CreateEmployee" type="button"
 value="Instantiate Employee" onclick="createEmployee()" />
</div>
...
function createEmployee(){
 var emp1 = new AspNetAjaxInAction.Employee();
 emp1.First = "Frank";
 emp1.Last = "Rizzo";
 emp1.Title = "Principal";
}

Without the GenerateScriptType annotation in the Web Service class, a runtime
exception would occur when you try to instantiate the Employee object. Instead,
you’re able to create an instance and update its properties accordingly.

 Making asynchronous requests from JavaScript to a Web Service is pretty easy.
What isn’t as easy is changing the way these request are submitted. Let’s take a
closer look at the types of requests we’re talking about.

Listing 5.9 Adding support for the Employee class on the client using
 GenerateScriptType

158 CHAPTER 5

Making asynchronous network calls
5.1.4 Using HTTP GET

So far, all the calls you’ve made to the Web Service have used the HTTP POST verb.
As a security measure, which we’ll delve into in a minute, ASP.NET AJAX accepts
these types of requests only from the browser by default. To accommodate an
HTTP GET request, you’re forced to explicitly adorn a method with the Script-
Method attribute as well as set its UseHttpGet property to true. This subtle but
conscious declaration prevents you from inadvertently letting the browser invoke
methods with the HTTP GET verb. Listing 5.10 demonstrates how to update one of
the existing methods, GetDeals, with HTTP GET capabilities.

[ScriptMethod(UseHttpGet=true)]
[WebMethod]
public List<Beverage> GetDeals()
{
 ...

What’s all the fuss about?
Why is HTTP GET disabled by default? The primary reason is to avoid compromis-
ing security in Ajax applications. To help you understand the kind of security
we’re talking about, we’ll describe how JSON hijacking works.

 A common approach for JSON hijacking is to introduce into a page a malicious
script that invokes an HTTP GET request, like so:

<script type="text/javascript" src="someReallyEvilScript.js">
</script>

Because the script is included on the page, it evades the origin policy that brows-
ers enforce. This policy is put in place to limit objects like XMLHttpRequest from
calling URLs in the same domain. This exploit leaves the JSON payload open for
viewing and manipulation of the script. Thankfully, the ASP.NET AJAX framework
provides more than one barrier for stopping this problem (a technique known as
security in depth).

 The first layer of security for this scenario forces you to explicitly enable HTTP
GET on a method, as we just covered. Second, validation against the Content-Type
header field of the request is applied to ensure that it’s set to application/json.
It’s interesting to note that when browsers parse external scripts that are included
on a page, the content type is never set to application/json when making the

Listing 5.10 Enabling HTTP GET by updating the ScriptMethod attribute and
 UseHttpGet property

Working with ASP.NET Web Services 159
request. If any of these conditions aren’t met (HTTP GET settings or the applica-
tion/json content type), then the request is promptly rejected.

 Before we wrap up this section on working with Web Services, we’ll explore
one more approach. It involves making JavaScript calls to methods on a page,
instead of to a Web Service.

5.1.5 Page methods

An interesting feature in ASP.NET AJAX is the ability to call, from JavaScript, meth-
ods that are declared in the ASP.NET page itself. Because these methods are declared
on a page, not from a Web Service, they’re appropriately called page methods. To
demonstrate how this works, let’s add a simple static method called HelloEmployee
to the page. This method takes as a parameter an instance of the Employee class you
created earlier. The method returns to the caller a formatted greeting:

[WebMethod]
public static string HelloEmployee(AspNetAjaxInAction.Employee emp)
{
 return string.Format("Hello {0} {1}.", emp.First, emp.Last);
}

Notice how the method is decorated with the WebMethod attribute (defined in the
System.Web.Services namespace), similar to public methods in a Web Service.
This required attribute must be adorned on any methods you want to expose as a
page method.

 In the .aspx page, you enable support for these types of methods by setting the
EnablePageMethods property of the ScriptManager to True. By default, this set-
ting isn’t enabled, and any static web methods on the page are omitted from the
web service proxy:

<asp:ScriptManager ID="ScriptManager1" runat="server"
 EnablePageMethods="True">
 <Services>
 <asp:ServiceReference Path="StarbucksService.asmx"
 InlineScript="true" />
 </Services>
</asp:ScriptManager>

To complete this example, you need to call the method from JavaScript and pro-
cess the response. You do so in much the same manner as the previous asynchro-
nous requests, but this time the calls are prefixed with PageMethods as opposed
to the name of the service class. To demonstrate, let’s extend the createEmployee
function you wrote earlier to pass in the Employee instance to the HelloEmployee
method (see listing 5.11).

160 CHAPTER 5

Making asynchronous network calls
function createEmployee(){
 var emp1 = new AspNetAjaxInAction.Employee();
 emp1.First = "Frank";
 emp1.Last = "Rizzo";
 emp1.Title = "Principal";

 PageMethods.HelloEmployee(emp1, onHelloEmployeeSuccess);

}

function onHelloEmployeeSuccess(result, context, methodName){
 alert(result);
}

You call the B static method HelloEmployee that is
declared on the page. Passed into the method is an
instance of the Employee class that you C instanti-
ated on the browser. When the code is executed and
the D results are returned, an alert dialog is dis-
played to greet the employee (see figure 5.6).

 Page methods offer an alternative to creating a
local Web Service for a site. One of the caveats is that
only the script from the current page can access the
method, as opposed to offering it to other pages on
the site. You can look at it as a private web method
for that page.

 You should now have a solid understanding of how to work with Web Services
and JavaScript. The next section will bring you closer to what goes on behind the
scenes with asynchronous network calls.

5.2 The asynchronous communication layer

In this section, we’ll examine the network layer, also known as the asynchronous
communication layer, in the Microsoft Ajax Library. Briefly, this layer of the Ajax
stack provides a set of client classes that abstract away from the client any browser-
specific discrepancies for network communication. This enables you to write con-
sistent, solid code for sending asynchronous requests to a web server. Let’s begin
by examining a simple request and the components that glue it together.

Listing 5.11 Instantiate the Employee class on the client, and pass it
 to a PageMethod.

Call
HelloEmployeeB

Instantiate Employee instance C

Return
results

D

Figure 5.6 The results of
passing in a complex type to
the server from JavaScript

The asynchronous communication layer 161
5.2.1 A simple WebRequest

The process of sending an HTTP request with the Microsoft Ajax Library involves
three objects:

■ Sys.Net.WebRequest—The HTTP request client object
■ Executor—Determines how requests are sent and provides status about the

request
■ WebRequestManager—A global object that issues the request by invoking the

executor object

To grasp the role of these objects, let’s put together a quick example that makes a
simple request.

 Suppose you have a file called message.txt on the site. To request the contents
of this file from JavaScript, you can use code like that shown in listing 5.12.

var request = new Sys.Net.WebRequest();
request.set_url("message.txt");
request.add_completed(onRequestComplete);
request.invoke();

The first step in putting together a request is to create an instance of the
Sys.Net.WebRequest object. Then, you set the url property of the request to the
file on the server. Next, you add an event handler for when the request completes
by calling the add_completed function and passing in the name of the routine.
The final statement in listing 5.12 is a call to the invoke method, which is respon-
sible for issuing the asynchronous request.

NOTE The add_completed function should be called before the invoke
method on the WebRequest instance. If the browser has the message.txt
file already in its cache, you don’t need to issue an HTTP request to the
server. In this case, the request completes synchronously, and the onRe-
questComplete handler is called before the invoke method returns.

Let’s look now at the callback routine, onRequestComplete. Here, you receive the
contents of the file requested from the server:

function onRequestComplete(executor, eventArgs) {
 alert(executor.get_responseData());
}

Listing 5.12 A simple HTTP request for the contents of another file on the server

162 CHAPTER 5

Making asynchronous network calls
The onRequestComplete function is called with two parameters. The first, execu-
tor, is of type Sys.Net.WebRequestExecutor, and contains all the information about
the status of the asynchronous request. The second, eventArgs, is always set to
Sys.EventArgs.Empty—an object that represents the absence of event arguments.

NOTE Sys.EventArgs.Empty plays the same role as the System.EventArgs.Empty
object that is passed to event handlers in the .NET framework to indicate
the absence of event arguments.

To retrieve the contents of the file, you can call the get_responseData method of
the executor object. If the response completes successfully, the content of the
message.txt file is returned. In section 5.2.4, we’ll examine what happens when a
request fails and how to handle it cleanly.

 This executor object is important. Let’s discuss its function in the process.

5.2.2 The executor

The executor object that you accessed in the earlier example is an instance of the
Sys.Net.XMLHttpExecutor class. In turn, this class inherits from Sys.Net.WebRe-
questExecutor, which acts as an abstract class. By overriding the implementation
of the executeRequest method, you can specify how an HTTP request is sent from
script. For example, the default executor, Sys.Net.XMLHttpExecutor, sends a
request using the XMLHttpRequest object. Other types of executors can be created
to implement different techniques for sending asynchronous requests to the server.

NOTE At the moment, the XMLHttpExecutor is the only executor provided by
the Microsoft Ajax Library. Previous CTPs included other executors, such
as the IFrameExecutor. However these executors were omitted from the
final release for quality and security reasons.

The executor object provides all the information you need to know about the
response sent by the web server. If you’re expecting data in an XML format, use
the get_xml method to retrieve the response in the form of an XML DOM object.
Data returned in a JSON format can be retrieved with the get_object method.
The executor also offers methods that you can use to examine the status code and
text of each response:

var statusCode = executor.get_statusCode();
var statusText = executor.get_statusText();

Facilitating all this interaction is a single object on the client called the WebRequest-
Manager. To help you understand how all the pieces fit together, we’ll continue
our exploration by briefly looking at how this object is used and where it fits.

The asynchronous communication layer 163
5.2.3 WebRequestManager

The WebRequestManager is an instance of the Sys.Net._WebRequestManager
class. When the Microsoft Ajax runtime is loaded, the instance is created and
stored in a global JavaScript variable called Sys.Net.WebRequestManager.

 When the invoke method is called on a WebRequest object, the request is
passed to the WebRequestManager. Here, checks are made to determine the asso-
ciated implementation of the executor object for the request. If an assigned exec-
utor isn’t found, then the default XMLHttpExecutor is used. At this point, the
WebRequestManager calls the executeRequest method on the executor object to
launch the request.

 This leads us to errors and how you should handle them correctly and effi-
ciently. In the next section, you’ll put together a useful error-handling mechanism
that can be added to your toolbox for future Ajax development.

5.2.4 Handling errors

The onRequestComplete function that you used earlier has an obvious problem:
It doesn’t check for errors. It assumes that the request always succeeds and that
the response always contains the expected data. Loss of network connectivity, an
overloaded server, and runtime exceptions are a few of the reasons an error can
occur. Too many things are not under your control and can have a negative
impact on the outcome of a request. In such cases, you need to inform the user
properly that an error occurred, or at least have logic in place to manage the
error efficiently.

 Errors fall into two categories: server-returned HTTP errors and non-HTTP errors.
You can have a server-returned HTTP error when the request successfully reaches
the server but fails to process it. A valid example is when an ASP.NET application
throws an exception during the processing of the request, such as attempting to
access an object with no reference. When this happens, you can obtain the exact
error from the HTTP status code returned by the server. The response’s payload
also contains the error description. Table 5.1 summarizes the status codes you’re
interested in.

Table 5.1 HTTP status codes

Status code range Meaning

100-199 Informational status codes. These status codes don’t normally arise during
ASP.NET AJAX development and can be ignored.

200-299 The request was received and successfully processed.

164 CHAPTER 5

Making asynchronous network calls
Based on your knowledge of the HTTP status codes, you can modify the onRe-
questComplete method as shown in listing 5.13.

function onRequestComplete(executor, args) {
 var statusCode = executor.get_statusCode();

 if (statusCode >= 200 && statusCode < 300) {
 alert(executor.get_responseData());
 }
 else {
 var message = String.format('HTTP Error: {0}, Status Text: {1}',
 executor.get_statusCode(),
 executor.get_statusText());
 alert(message);
 }
}

This handles most exceptions, but what about making the code reusable? And
what about timeouts and requests that are aborted? Perhaps it makes sense to
make the error handling more granular. This way, more information is available
in case additional logic is needed for specific types of errors.

 Listing 5.14 demonstrates a snippet of code that extends the WebRequestExec-
utor object with a function called checkError.

300-399 The request needs to be redirected. The most common code in this range is 302,
which is sent when Response.Redirect is called from ASP.NET code.

400-499 The request contains an error. A common error code is 404, which indicates that
the resource (file) wasn’t found on the server.

500-599 The request was valid, but the server failed to process the request. The most com-
mon error code in this range is 500, which is returned by ASP.NET when an excep-
tion occurs during request processing.

Listing 5.13 Modified version of the onRequestComplete function to handle
 HTTP errors

Table 5.1 HTTP status codes (continued)

Status code range Meaning

Check HTTP
status code

The asynchronous communication layer 165
Sys.Net.WebRequestExecutor.prototype.checkError = function() {
 var e = null;

 if (this.get_aborted()) {
 e = Error.create('Request Aborted.',
 { name : 'RequestAbortedError' });
 }
 else if (this.get_timedOut()) {
 e = Error.create('Request timed out.',
 { name : 'RequestTimeoutError' });
 }
 else {
 var statusCode;
 try {
 statusCode = this.get_statusCode();
 }
 catch(e) {
 statusCode = 0;
 }

 if (statusCode < 100 || statusCode >= 600) {
 e = Error.create('Connection Error.',
 {name : 'ConnectionError' });
 }
 else if ((statusCode < 200) || (statusCode >= 300)) {
 e = Error.create('HTTP Error.',
 { name : 'HTTPError',
 "statusCode" : statusCode,
 statusText : this.get_statusText() });
 }
 }

 return e;
}

Let’s walk through the code in the checkError routine to learn more about the
other ways of investigating errors. First, the variable e is declared and initialized to
null. If no error is found, the fact that this variable remains null signifies to the
caller that the request succeeded. Next, you check to see if the request was B
aborted by checking the aborted property of the executor object. If this condi-
tion is true, then an Error object is created along with the status code and text
from the WebRequestExecutor object.

 If the request wasn’t aborted, the next check queries the C timedOut property
to determine if the server took too long to process the request. The final check

Listing 5.14 A reusable error-checking routine that extends the WebRequestExecutor
 object

Check whether
request was aborted

B

Check timedOut
property

C

Check
status

code D

166 CHAPTER 5

Making asynchronous network calls
examines the D status code. If the code’s value doesn’t fit between 200 and 300,
then you create an Error object accordingly.

NOTE Connection failures are handled differently depending on the browser.
Internet Explorer, for example, sometimes returns a status code that is
greater than 600 with text that conveniently says Unknown. Firefox throws
an exception when get_statusCode is called. Opera prefers to return a
status code of zero and empty status text. As you can imagine, a reusable
function can come in handy.

The checkError function can become part of your toolbox moving forward.
Because it extends the WebRequestExecutor object through the prototype prop-
erty (see chapter 3 for details), you can use it conveniently in future projects.

 This concludes our general overview of how to communicate with local ser-
vices from the client. In some cases, you want to reach out to external services—in
the same domain or outside. In the next section, we’ll address a few approaches
that work with ASP.NET AJAX.

5.3 Consuming external Web Services

Today’s modern browsers impose security restrictions on network connections that
include calls to the XMLHttpRequest object. These restrictions prevent a script or
application from connecting to a web server other than the one the page originally
came from. These calls are referred to as cross-domain requests. Figure 5.7 illustrates
this basic restriction.

 The rationale is simple: If it’s possible to make such a call, then it’s possible for
a rogue website to access sensitive data from other websites. For example, a web
page in http://www.rogue-domain.com can use the XMLHttpRequest object and
access all of the user’s e-mails from http://mail.live.com. Fortunately, such an
action isn’t permitted by the XMLHttpRequest object in its default configuration.

ServerClient

Figure 5.7
By default, the XMLHttpRequest
object is limited to making
asynchronous calls to local
servers only.

Consuming external Web Services 167
NOTE Even though cross-domain calls aren’t permitted by the XMLHttpRequest
object in its default configuration, the user can change the browser set-
tings to make certain cross-domain calls succeed. However, asking users
to change their browser settings so they can access your website is gener-
ally a bad practice.

The following types of calls are considered cross-domain requests:

■ A change in the domain—http://www.mywebsitesite.com can’t access http://
www.yourwebsite.com.

■ A change in the protocol—http://www.mywebsite.com can’t make a call to
https://www.mywebsitesite.com. Note the s in https for the second URL.

■ A change in the port number—http://www.mywebsite.com:8080 can’t make a
call to http://www.mywebsite.com:8088.

■ A change in the subdomain—http://mail.mywebsite.com can’t access http://
calendar.mywebsite.com.

A few safe, recommended ways are available to access data across domains. In the
following sections, we’ll discuss a number of different approaches that bypass the
cross-domain limitation.

5.3.1 The script technique

Even though the browser doesn’t allow XMLHttpRequest calls across domains, it
allows a website to load scripts hosted in a different domain. For instance, a web
page in http://www.mywebsite.com can request a JavaScript file from http://
www.yourwebsite.com using the following markup:

<script src="http://www.yourwebsite.com/somecoolscript.js"
 type="text/javascript"></script>

As usual, the src attribute of the script tag contains the URL of the script file to
request. In some cases, parameters are passed in to the query string to retrieve
more specific data. The handler for that URL on the server then usually parses the
query string to generate JavaScript code based on the parameters passed in. The
generated script sent from the server can even take actions on the client. If you
wanted to make these calls asynchronous, you could create a dynamic script tag
using JavaScript and the DOM instead of declaratively placing it on the page.

 This method, widely used in Google Maps, Virtual Earth, and the Yahoo JSON
APIs, is in many ways limited because the scripts are always requested with the
HTTP GET verb. This confines the request to making queries for data with no sup-
port for altering the state of a local server (a possibility that a HTTP POST request

168 CHAPTER 5

Making asynchronous network calls
offers). This comes in handy if you’re providing such services, but it falls short of
providing additional features for consumers.

 You can resolve this situation by introducing something in the middle—a
proxy, if you will—that facilitates communication between the local site and an
external service. Let’s explore this technique in the next section.

5.3.2 Cross-domain calls through the server

Let us recap what you know so far. First, you learned that including scripts in
pages from other domains allows you to retrieve data from their services. But due
to the way requests are delegated (via the HTTP GET verb), certain limitations
restrict you from doing more than retrieving simple data. Second, you know that
in the server-side code (in the code-behind files), you have full access to other
domains through the rich APIs afforded to you in .NET. This leads to the second
option for making cross-domain calls: calls through the server.

 To better understand this scenario, let’s revisit the first Web Service call you
made at the beginning of the chapter. You called a GetLocationCount method to
retrieve the number of stores in a ZIP code. Let’s pretend that another Web Ser-
vice on a different domain aggregates this total. You can’t call that service directly
from JavaScript, but you can instead leverage the local Web Service as a proxy to
the outside service.

 You can think of the local service as the middle-man in a transaction. As the cli-
ent, you don’t know much about the external service, nor should you. All you
know is that you’re interested in the data it provides. The local service handles all
the plumbing and the complicated work of communicating with the remote
server. Figure 5.8 illustrates the concept of using a local server as a proxy for call-
ing the remote APIs of a remote server.

 This is the recommended way of communicating with remote servers. Let’s
build an example that demonstrates how it works.

Local ServerClient Remote Server

Remote API

.aspx .asmx

Figure 5.8 A local server can be used as a proxy to a remote server to get around
cross-domain restrictions.

Consuming external Web Services 169
5.3.3 Mash-it-up with ASP.NET AJAX

In this section, you’ll put together an application that retrieves and works with
remote services like the Microsoft Virtual Earth map and the Yahoo! Geocoding
APIs. This practice of pulling together content and data from other remote ser-
vices into a single application is sometimes referred to as a mashup. Figure 5.9
shows the mashup application in action.

Figure 5.9 A simple geographical mashup

Origin of the term “mashup”
Mashup (or mash it up) is a Jamaican Creole term meaning “to destroy.” In the
context of reggae or ska music, it can take on a positive connotation and mean
an exceptional performance or event. The term has also been used in hip-hop,
especially in cities such as New York that have a large Jamaican population. In
popular culture, a mashup can mean a musical genre of songs that consists en-
tirely of parts of other songs, or a website or web application hybrid that combines
content from more than one source into an integrated experience.

170 CHAPTER 5

Making asynchronous network calls
The first step in putting together this application is to create a local Web Service that
you can use to communicate with other remote services. Because the Yahoo! APIs
are on another domain, you’ll use this service to facilitate any requests to the APIs
for data. Listing 5.15 shows the contents of the local service called GeocodeService.

<%@ WebService Language="C#"
 Class="AspNetAjaxInAction.GeocodeService" %>

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Web.Script.Services;

namespace AspNetAjaxInAction
{
 [ScriptService]
 [WebService(Namespace = "http://tempuri.org/")]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 public class GeocodeService : System.Web.Services.WebService
 {

 [WebMethod]
 public Location GetLocationData(string street,
 string zip,
 string city,
 string state,
 string country)
 {
 return YahooProvider.GetLocationData(street, zip,
 city, state, country);
 }
 }
}

The service has just one method: GetLocationData. The method returns an
instance of the Location class that you also define in the project. This class pro-
vides a simple structure for defining the geographical coordinates of a location on
a map. Because you decorated the GeocodeService class with the ScriptService
attribute, the methods and types (such as Location; see listing 5.16) that it inter-
acts with are generated in the client proxies.

Listing 5.15 GeocodeService that acts as the proxy to the Yahoo! Geocode APIs

Consuming external Web Services 171
using System;

namespace AspNetAjaxInAction
{
 public class Location
 {
 private double latitude = 0.0;
 private double longitude = 0.0;

 public double Latitude
 {
 get { return this.latitude; }
 set { this.latitude = value; }
 }

 public double Longitude
 {
 get { return this.longitude; }
 set { this.longitude = value; }
 }

 public Location()
 { }
 }
}

The last server-side class, an implementation class called YahooProvider, is used to
encapsulate all the details of communication with the Yahoo! service. Listing 5.17
contains the implementation for the provider class.

using System;
using System.Web;
using System.Net;
using System.Xml;
using System.Globalization;

namespace AspNetAjaxInAction
{
 public class YahooProvider
 {
 private readonly static string apiKey = "YahooDemo";
 private readonly static string geocodeUriFormat =
 "http://api.local.yahoo.com/MapsService/V1/geocode?appid=
 ➥{0}&street={1}&zip={2}&city={3}&state={4}";

Listing 5.16 Location class for defining coordinates on a Virtual Earth map

Listing 5.17 Implementation details for communicating with the Yahoo! APIs

172 CHAPTER 5

Making asynchronous network calls

 public static Location GetLocationData(string street,
 string zip,
 string city,
 string state,
 string country)
 {
 // Use an invariant culture for formatting numbers.
 NumberFormatInfo numberFormat = new NumberFormatInfo();
 Location loc = new Location();
 XmlTextReader xmlReader = null;

 try
 {
 HttpWebRequest webRequest = GetWebRequest(street, zip,
 city, state);
 HttpWebResponse response =
 ➥(HttpWebResponse)webRequest.GetResponse();

 using (xmlReader = new XmlTextReader(
 ➥response.GetResponseStream()))
 {
 while (xmlReader.Read())
 {
 if (xmlReader.NodeType == XmlNodeType.Element &&
 xmlReader.Name == "Result")
 {
 XmlReader resultReader = xmlReader.ReadSubtree();
 while (resultReader.Read())
 {
 if (xmlReader.NodeType == XmlNodeType.Element &&
 xmlReader.Name == "Latitude")
 {
 loc.Latitude = Convert.ToDouble(
 ➥xmlReader.ReadInnerXml(),
 numberFormat);
 }

 if (xmlReader.NodeType == XmlNodeType.Element &&
 xmlReader.Name == "Longitude")
 {
 loc.Longitude = Convert.ToDouble(
 ➥xmlReader.ReadInnerXml(),
 numberFormat);
 break;
 }
 }
 }
 }
 }
 finally

Consuming external Web Services 173
 {
 if (xmlReader != null)
 xmlReader.Close();
 }

 // Return the location data.
 return loc;
 }

 private static HttpWebRequest GetWebRequest(string street,
 string zip,
 string city,
 string state)
 {
 string formattedUri = String.Format(geocodeUriFormat,
 apiKey,
 street, zip,
 city, state);

 Uri serviceUri = new Uri(formattedUri, UriKind.Absolute);
 return
 ➥(HttpWebRequest)System.Net.WebRequest.Create(serviceUri);
 }
 }
}

We won’t go over the details of the YahooProvider class because the purpose of
this example is to demonstrate how cross-domain calls can be initiated from the
client. However, we include all the code to ensure that you can follow along and
successfully perform a cross-domain request just as you will here.

NOTE We decided to keep the logic for making the remote call separate from
the local web service definition because the YahooProvider class is rep-
resentative of the server class used to create and send the request to the
remote web service. Nothing prevents you from, for example, using the
server class generated using the WSDL of a remote web service instead of
manually coding a specific provider.

All the pieces are in place on the server side for reaching out to a remote service.
Now, you need to put the pieces together on the client to make this a true
mashup.

174 CHAPTER 5

Making asynchronous network calls
Client code
Now that all the needed server classes are in place, you can kick off the cross-
domain call using JavaScript from the browser. Listing 5.18 shows the client-side
code for the geographical mashup. Add this code in the form tag of a web page in
the ASP.NET AJAX enabled website.

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference
 Path=
 "http://dev.virtualearth.net/mapcontrol/v4/mapcontrol.js" />
 </Scripts>
 <Services>
 <asp:ServiceReference Path="~/GeocodeService.asmx" />
 </Services>
</asp:ScriptManager>

<div id="theMap"
 style="position:relative; width:400px; height:400px;">
</div>

<script type="text/javascript">
<!--
 function pageLoad() {
 var theMap = new VEMap('theMap');
 theMap.LoadMap();

 var city = 'Paris';
 var country = 'France';
 GeocodeService.GetLocationData('', '', city,
 country, '',
 onLocationReceived);

 function onLocationReceived(result) {
 var latLong = new VELatLong(result.Latitude,
 result.Longitude);
 var pinText = String.format('{0} ({1}, {2})', city,
 result.Latitude, result.Longitude);
 var pin = new VEPushpin(1, latLong, null, pinText);

 theMap.AddPushpin(pin);
 theMap.SetCenter(latLong);
 }
 }
//-->
</script>

Listing 5.18 Client code for the geographical mashup

Virtual Earth script B

Web Service reference C

Virtual
Earth map

D

Create
map

E

Get geo
location

F

Add
location

pin G

Consuming external Web Services 175
First, included in the ScriptManager is the B external script reference for the Vir-
tual Earth map. It downloads the functionality you need to display and update the
map on the page. Next in the ScriptManager declaration is a reference to the C
local service. This is the entry point into the other domains that are otherwise
inaccessible from the client.

 In the markup portion of the page is a simple D div element, which is set
aside to host the Virtual Earth map. Finally, in the script, when the pageLoad event
is fired by the Application object (see chapter 2), you E create the Virtual Earth
map. Then, you make a F call to the local service that returns the geographical
coordinates for a location on the map. In the callback routine, you G update the
map with a new pushpin for the location.

 This mashup demonstrates how to make cross-domain calls in a safe manner. It
also shows how you can import functionality from external scripts to add addi-
tional resources to a page. Although this approach seems like the most logical one
for communicating with remote services, there is another option we’ve yet to
cover: bridges.

5.3.4 Bridges

The ASP.NET Futures CTP offers another alternative for communicating with
remote services. This approach, or technology, is suitably referred to as bridges or
the bridge technology. Developers who leverage bridges can create gateways to
remote services both programmatically and declaratively with just a few lines of
code. Because the bridge code runs in the scope of the web application, the
browser can communicate exclusively with the local server. On the server side, the
bridge can create a dialogue with external services and subsequently return data
to the browser.

NOTE The bridge technology was almost removed from the ASP.NET AJAX
framework shortly before it was released. Due to customer demand, it
made its way back into the Futures CTP. At the time of this writing, the
bridge technology suffers from a number of symptoms that make it com-
plex and challenging to implement.

Bridge configuration
As we mentioned, bridges require the ASP.NET Futures CTP, which means the
Microsoft.Web.Preview.dll assembly must be added as a reference to the website.
The final step in configuring bridges is to update the site’s web.config file. Begin-
ning with the build provider, you must add a new entry to the <compilation> sec-
tion to ensure that a server-side class is generated for a bridge file:

176 CHAPTER 5

Making asynchronous network calls
<compilation debug="true">
 <assemblies>
 ...
 </assemblies>
 <buildProviders>
 <add extension=".asbx"
 type="Microsoft.Web.Preview.Services.BridgeBuildProvider" />
 </buildProviders>
</compilation>

Finally, you need to include an entry for the HTTP handler that will manage the
requests to the .asbx files:

<httpHandlers>
 ...
 <add verb="GET,HEAD,POST" path="*.asbx"
 type="System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" validate="false"/>
</httpHandlers>

You’re now ready to begin experimenting with the bridge technology. Let’s put
together an example that communicates with a well-known site, Flickr, to query
and display photos from users around the globe.

Bridging to Flickr
Flickr offers a wealth of options for how you can format requests and conse-
quently retrieve responses. Some of the request formats include REST, XML-RPC,
and SOAP. Response formats consist of REST, PHP, JSON, SOAP, and others. You
can find a summary of these services and formats, and a good starting point for
learning about Flickr services, at http://www.flickr.com/services/api/.

 For this example, you’re interested in performing a search against the photos
on the site. To keep things simple, you’ll use the REST option, which is available at
http://api.flickr.com/services/rest/. Remember, REST services typically provide a
flexible interface that lets you append details about the request to the URL. For
instance, a search for photos tagged with the keyword ajax might look like this:

http://api.flickr.com/services/rest/?method=
 ➥flickr.photos.search&api_key=
 ➥5cbeb1d1a24ac4698a51f0762ee28c0c&tags=ajax&extras=tags

Notice how parameters for the search criteria, such as tags=ajax, and other impor-
tant elements are passed along in the URL of the request. On the provider’s end, the
parameters are parsed from the request and then used to perform the search, result-
ing in a collection of photos that are returned in an XML format (see figure 5.10).

http://api.flickr.com/services/rest/
http://api.flickr.com/services/rest/
http://www.flickr.com/services/api/
http://www.flickr.com/services/api/

Consuming external Web Services 177
We’ll discuss how to decode this response shortly, but first let’s put together the
pieces that make the request by examining the bridge file that makes this possible.

The .asbx bridge file
Earlier, we mentioned a new file extension designated for bridges. This .asbx
extension is basically an XML file that serves as a roadmap to an external service
and its methods. Listing 5.19 provides an example of how a request to the Flickr
REST service is mapped out.

<?xml version="1.0" encoding="utf-8" ?>

<bridge namespace="AspNetAjaxInAction"
 className="FlickrSearch">
<proxy type=
 "Microsoft.Web.Preview.Services.BridgeRestProxy"

Listing 5.19 The bridge file provides a roadmap or gateway to the remote service.

Figure 5.10 Search results from the Flickr REST service are returned in an XML format that
you must parse.

Bridge
tag

B

Proxy
element

C

178 CHAPTER 5

Making asynchronous network calls
 serviceUrl="http://api.flickr.com/services/rest/" />
 <method name="Search">
 <input>
 <parameter name="method" value="flickr.photos.search" />
 <parameter name="api_key"
 value="% appsettings: FlickrAppKey %" />
 <parameter name="tags" />
 <parameter name="content_type" value="1+" />
 <parameter name="extras" value="tags" />
 </input>
 </method>
</bridge>

The roadmap begins with the B bridge tag and the declaration of a namespace
and class name for the service. You can relate this to the declaration of a local
Web Service and how it’s perceived by the client. In this tag are the proxy element
and the declaration of the type of proxy you want to leverage: C
Microsoft.Web.Preview.Services.BridgeRestProxy. This type can also be a
custom class from the App_Code folder of the website or one of a few other
options. Also in the proxy tag is the URL to the D REST service you’ll be commu-
nicating with.

 Subsequently, a collection of methods is exposed to the client. You can liken
this to how web methods are declared in a service. The method tag declares the
name of the method you can call from JavaScript. In this tag are the input tag and
a collection of E parameters that define the fields you’ll pass into the request,
ultimately forming the URL that is sent to the service.

 The parameters were determined by examining the online documentation for
the flickr.photos.search API (see http://www.flickr.com/services/api/flickr.
photos.search.html). We chose a few of the optional ones to conserve space and
maintain the focus on the bridge technology.

Communicating with the bridge
Now that you have the bridge file configured, you can move ahead with calling it
from the JavaScript. In order for this to happen, you must first add a service refer-
ence to the ScriptManager on the page:

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="flickr.asbx"
 InlineScript="true" />
 </Services>
</asp:ScriptManager>

REST service URL D

Input tag and
parameters

E

http://www.flickr.com/services/api/flickr.photos.search.html
http://www.flickr.com/services/api/flickr.photos.search.html

Consuming external Web Services 179
Just like a reference to a local Web Service, this action provides you with a client-
side proxy to the bridge file. The call to perform a search can now be executed as
easily as a call to a local service:

AspNetAjaxInAction.FlickrSearch.Search({tags:"Microsoft"},
 onSearchComplete,
 onSearchFailed);

The first parameter of the call takes a collection of input parameters. In the .asbx
file, you hard-coded all the parameters except one: tags. The next set of parame-
ters follows the familiar pattern of making network calls—callback functions for
success and failure, and the optional user-context parameter.

 From the perspective of the client-side code, nothing has changed. But this
time, the information returned isn’t as friendly. This brings us to another feature
of bridges: the ability to transform the data coming back into something more
usable or presentable.

Transforming the bridge response
The bridge file supports the ability to transform or convert the response from the
service before it reaches the caller. A few built-in transformers make this possible,
including one that maps elements and tags in the response to an object. Listing 5.20
illustrates how adding a transformer to the bridge file can alter the response you get
in the browser from XML to an object that’s friendlier and easier to work with.

<?xml version="1.0" encoding="utf-8" ?>
<bridge namespace="AspNetAjaxInAction" className="FlickrSearch">
 ...
 <transforms>
 ➥<transform

type="Microsoft.Web.Preview.Services.XPathBridgeTransformer">
 <data>
 <attribute name="selector" value="/rsp/photos/photo" />
 <dictionary name="selectedNodes">
 <item name="ID" value="@id" />
 <item name="Owner" value="@owner" />
 <item name="Secret" value="@secret" />
 <item name="ServerID" value="@server" />
 <item name="FarmID" value="@farm" />
 <item name="Title" value="@title" />
 <item name="Tags" value="@tags" />
 </dictionary>

Listing 5.20 XPathBridgeTransformer, which lets you query the response to
 an object

XPathBridgeTransformer B

Map to
photosC

Map nodes
to propertiesD

180 CHAPTER 5

Making asynchronous network calls
 </data>
 </transform>
 </transforms>
 </method>
</bridge>

You use the B XPathBridgeTransformer to query the results and build a custom
object. Another transformer that is available is the XsltBridgeTransformer,
which lets you apply an XSLT style sheet to the response. Using C XPath queries,
you create a custom object by assigning the D nodes in the response to a set
of properties.

 Now, from the newly formatted response, you can work with the array of
objects returned to format the page with something more appealing to the user.
Listing 5.21 shows the markup and client-side script used to provide the user with
a visually meaningful set of results.

<div>
 <img src="/images/flickr_logo_gamma.gif.v1.5.7"
 width="98" height="26" />
 <input id="flickrSearch" type="text" />
 <input id="search" type="button" value="Search"
 onclick="doSearch();" />

 Searching...

 <div id="summary"></div><hr />

</div>

<script type="text/javascript" language="javascript">

 function doSearch(){
 var keywords = $get("flickrSearch").value;
 $get("searching").style.display = "inline";
 AspNetAjaxInAction.FlickrSearch.Search({tags:keywords},
 onSearchComplete, onSearchFailed);
 }

Listing 5.21 Contents of the Flickr bridge application

Consuming external Web Services 181
 function onSearchComplete(results){
 $get("searching").style.display = "none";
 $get("summary").innerHTML = formatSummary(results,
 $get("flickrSearch").value);

 var photos = new Sys.StringBuilder();
 photos.append("<table>");
 for (var i = 0; i < results.length; i++){
 var photo = results[i];
 photos.append("<tr>");
 photos.append(formatImage(photo));
 photos.append(formatDetails(photo));
 photos.append("<tr>");
 }
 photos.append("</table>");
 $get("photoList").innerHTML = photos.toString();
 }

 function onSearchFailed(error){
 $get("searching").style.display = "none";
 alert(error.get_message());
 }

 function formatSummary(photos, tags){
 var summary = new Sys.StringBuilder();
 summary.append(photos.length);
 summary.append(" results found for photos tagged with ");
 summary.append("" + tags + "" + ".");
 return summary.toString();
 }

 function formatDetails(photo){
 var details = new Sys.StringBuilder();
 details.append("<td>");
 details.append("<div>");
 details.append(photo.Title);
 details.append("</div>");
 details.append("<div>");
 details.append("Tags: " + photo.Tags);
 details.append("</div>");
 details.append("</td>");
 return details.toString();
 }

 function formatImage(photo){
 var link = new Sys.StringBuilder();
 link.append("<td>");
 link.append("<img src='http://farm");
 link.append(photo.FarmID);
 link.append(".static.flickr.com/");
 link.append(photo.ServerID);

182 CHAPTER 5

Making asynchronous network calls
 link.append("/" + photo.ID + "_");
 link.append(photo.Secret);
 link.append("_s.jpg'");
 link.append(" />");
 link.append("</td>");
 return link.toString();
 }
</script>

Now for the grand finale. When you execute the application and perform a
search for microsoft surface, you get a result similar to that shown in figure 5.11.

 Bridges offer another alternative for communicating with external services from
JavaScript. You have to be aware of a few gotchas when working with them: They’re
hard to debug, they lack support in Visual Studio (no IntelliSense, debugging, or
tracing), and they’re still under development. For these reasons, we feel you should
be cautious when working with bridges and give strong consideration to whether
there is sufficient benefit to using them instead of calling a local Web Service.

Figure 5.11 The results of the Flickr search after transforming the data into a useful
object and formatting the interface

Using ASP.NET application services 183
In the next section, we’ll dive into ASP.NET AJAX’s support for some of the appli-
cation services in ASP.NET—notably authentication, profile, and roles.

5.4 Using ASP.NET application services

ASP.NET 2.0 includes a rich set of application services. Their purpose is to serve as
building blocks for common activities on a site. They significantly increase pro-
ductivity and save time for developers who routinely perform these general
actions (the ambitions of every framework). In this section, we’ll examine how
you can invoke these services from the client-side script.

5.4.1 Enabling ASP.NET application services

The first release of the ASP.NET AJAX framework supports two services: authentica-
tion and profile. The next version (which will ship with Orcas, the next version of
Visual Studio) will include roles and perhaps a few more services as well. We’ll begin
this section by focusing on the services supported in the 1.0 version of the frame-
work. Subsequently, we’ll provide a preview of the roles service offered in Orcas.

 Enabling these services requires a few updates to your web.config file. First,
each service must be added to the sectionGroup section under the configura-
tion group:

<sectionGroup name="webServices" ...
 <section name="profileService"
 type="System.Web.Configuration.ScriptingProfileServiceSection,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" requirePermission="false"
 allowDefinition="MachineToApplication"/>
 <section name="authenticationService"
 ➥type="System.Web.Configuration.
 ➥ScriptingAuthenticationServiceSection,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" requirePermission="false"
 allowDefinition="MachineToApplication"/>

Next, in the webServices collection of the system.web.extensions group, you
must enable each service:

<system.web.extensions>
 <scripting>
 <webServices>
 <authenticationService enabled="true" requireSSL = "false"/>
 <profileService enabled="true" />
 </webServices>
 </scripting>
</system.web.extensions>

184 CHAPTER 5

Making asynchronous network calls
The last step is the configuration of the data store—the location where member-
ship and profile information is stored. Out of the box, these application services
use the SQL-Express provider. For this example and the others in the book, we’ll
stick with this option.

TIP If you’d like to use the full version of SQL 2000 or 2005, or you’re inter-
ested in how to configure the database for application services, go here:
http://msdn2.microsoft.com/en-us/library/aa479307.aspx.

With the configuration complete, you’re ready to work with these services. Let’s
begin with the most common one: authentication.

5.4.2 Authentication service

Authentication is the means by which a user is identified with a set of credentials to
validate. ASP.NET AJAX currently supports only forms authentication. This is a
cookie-based authentication scheme where a user’s credentials (username and
password) are stored in a database or file. To configure this type of validation, you
must update web.config as follows:

<authentication mode="Forms">
 <forms cookieless="UseCookies" loginUrl="~/Login.aspx" />
</authentication>

Notice how you include and initialize the loginUrl property. Users who attempt
to view pages of the site that they aren’t authorized to access will be redirected to
this page. With this in mind, create a new folder for the site called Secure, and
add to it its own web.config with the following settings:

<?xml version="1.0"?>
<configuration>
 <system.web>
 <authorization>
 <deny users="?"/>
 <allow users="*"/>
 </authorization>
 </system.web>
</configuration>

In this setup, you grant access to authenticated users and reject anonymous ones
(for additional information about authorization support, see http://msdn2.
microsoft.com/en-us/library/8d82143t(VS.71).aspx). In the secure folder, add
another file called ContactInformation.aspx, which will ultimately allow authenti-
cated users to update their home address information.

 Now, if you attempt to reach the new page in the Secure folder, you’re redi-
rected to the login page as expected. Here, you provide the user with a form for
entering in their credentials. Figure 5.12 shows the login page.

http://msdn2.microsoft.com/en-us/library/8d82143t(VS.71).aspx)
http://msdn2.microsoft.com/en-us/library/aa479307.aspx
http://msdn2.microsoft.com/en-us/library/aa479307.aspx

Using ASP.NET application services 185
To authenticate the user, you have to read the values from the form and call the
authentication service for validation. Listing 5.22 shows the client-side script that
makes this possible.

<script type="text/javascript" language="javascript">
<!--

function pageLoad(){
 with(Sys.Services.AuthenticationService){
 set_defaultLoginCompletedCallback(onLoginCompleted);
 }
 $get("username").focus();
}

Listing 5.22 Using the authentication service from JavaScript to validate a user’s
 credentials

Figure 5.12 The login form used to authenticate users on the site

Default
callback

B

186 CHAPTER 5

Making asynchronous network calls
function loginUser(){

 var username = $get('username');
 var password = $get('password');
 Sys.Services.AuthenticationService.login(username.value,
 password.value,
 false,
 null,
 "Secure/ContactInformation.aspx",
 null,
 onLoginFailed,
 "User Context");
}

function onLoginCompleted(validCredentials,
 userContext,
 methodName){

 if (validCredentials == false){
 $get("loginStatus").innerHTML = "Login failed.";
 }
}

function onLoginFailed(error, userContext, methodName){
 alert(error.get_message());
}

//-->
</script>

When the page loads, you B set the default callback function for the service’s
login method. This isn’t a requirement, and it can be overwritten when you call the
function—this is just another approach for setting the callback. Next, the login-
User function is called when the Login button on the form is clicked. You C
retrieve the user credentials and then call the D login method to validate them. If
the call succeeds, regardless of whether the credentials are valid, the callback func-
tion E onLoginCompleted is called. Passed into the function’s first parameter is a
Boolean value that indicates if the credentials are valid. Because you specified a
URL in the fifth parameter, the user is redirected to that address if validation is suc-
cessful. If something goes wrong during validation, such as an error on the server,
then the F failed callback function is called.

 We briefly mentioned the login method used to validate the user credentials.
Listing 5.23 shows the structure of the method along with brief comments for
each parameter.

Get
credentials

C
Validate
user

D

Validation
complete

E

Validation
failed

F

Using ASP.NET application services 187
public Object login(Object username, // username to validate
 Object password, // password to validate
 Object isPersistent, // remember me?
 Object customInfo, // reserved for future
 Object redirectUrl, // redirect on auth
 Object loginCompletedCallback, // call on success
 Object failedCallback, // call on failure
 Object userContext); // user context

This gives you a brief introduction to how the authentication service can be called
from JavaScript. Now that you’re validating a user and redirecting them to a
secure (authenticated users only) page, we can look at another service that adds
interaction and personalization for users: profile.

5.4.3 Profile

In ASP.NET 2.0, the profile provider stores and retrieves information about a site’s
users, much like session. However, with profile, because the information is saved
to a database, the data is persisted and can be retrieved and configured at any
time. This differs from session, where information is erased once the user logs off
the site or their session expires. Adding properties to a user profile is as easy as
updating web.config with a few extra lines, as shown in listing 5.24.

Listing 5.23 Structure of the login method in the authentication service

Where are the services?
You’re calling the authentication service, but where exactly is it? The profile and
authentication services are built into the framework. In the case of the authenti-
cation service, a class called Sys.Services._AuthenticationService contains the im-
plementation for the service. The leading underscore indicates that the class is
treated like a private member (there are no real private classes in JavaScript).
You interact with this class through the Sys.Services.AuthenticationService variable.
This abstraction between the object and the actual implementation class provides
a singleton-like access point to the service.

188 CHAPTER 5

Making asynchronous network calls
<profile enabled="true">
 <properties>
 <add name="Address1" />
 <add name="Address2" />
 <add name="City" />
 <add name="State" />
 <add name="Zip" />
 </properties>
</profile>

In this example, you add properties that relate to an individual’s home address.
By default, each property is of type string. The goal in this section will be to read
from and update this profile information from the browser in a seamless and non-
intrusive manner.

Contact information page
The contact page we discussed earlier is the perfect candidate for integrating with
the profile service. Here, you’ll provide a form for the user to update and read
their information from their profile, all without the cost of a postback. Figure 5.13
shows the contact form when it’s first loaded.

Listing 5.24 Adding properties to the users profile

Figure 5.13 The contact information page gives the user a form for reading and updating their
profile information.

Using ASP.NET application services 189
At the top of the page is a link for logging out. When clicked, it logs out the
authenticated user and directs them back to the login page:

function logoutUser(){
 Sys.Services.AuthenticationService.logout(null,
 onLogoutCompleted,
 onLogoutFailed,
 null);
}

The logout function of the authentication service is straightforward. The first
parameter optionally takes in the URL for redirecting the user on success. If null
is passed, the loginUrl specified in the web.config is used. The callback pattern
for success and failure continues with the second and third parameters. The user
context is available in the last parameter.

Reading from profile
To read from a user’s profile, you call the service’s load function and populate the
elements on the page with the results; see listing 5.25.

function loadProfile(){
 Sys.Services.ProfileService.load(null, onLoadCompleted,
 onLoadFailed, null);
}

function onLoadCompleted(numProperties, userContext, methodName){
 var profile = Sys.Services.ProfileService;
 $get("address1").value = profile.properties.Address1;
 $get("address2").value = profile.properties.Address2;
 $get("city").value = profile.properties.City;
 $get("state").value = profile.properties.State;
 $get("zip").value = profile.properties.Zip;
}

function onLoadFailed(error, userContext, methodName){
 alert(error.get_message());
}

Because you pass in B null as the first parameter, you retrieve all the profile prop-
erties that you defined in web.config. Then, when the successful callback function
is called, you can C read the properties and populate the form accordingly.

Updating profile
Updating the user’s profile properties is just as easy—all you have to do is initial-
ize the values and then call the save function in the service. See listing 5.26.

Listing 5.25 Load method of the profile service, which retrieves a user’s settings

Pass null
as first
parameter

B

Read
properties

C

190 CHAPTER 5

Making asynchronous network calls
function saveProfile(){
 var addr1 = $get("address1").value;
 var addr2 = $get("address2").value;
 var city = $get("city").value;
 var state = $get("state").value;
 var zip = $get("zip").value;

 Sys.Services.ProfileService.properties.Address1 = addr1;
 Sys.Services.ProfileService.properties.Address2 = addr2;
 Sys.Services.ProfileService.properties.City = city;
 Sys.Services.ProfileService.properties.State = state;
 Sys.Services.ProfileService.properties.Zip = zip;

 Sys.Services.ProfileService.save(null, onSaveCompleted,
 onSaveFailed, null);
}

function onSaveCompleted(numProperties, userContext, methodName){
 $get("updating").style.display = "none";
}

function onSaveFailed(error, useContext, methodName){
 alert(error.get_message());
}

Again, you follow the same pattern of calling the service, passing in the name of
callback functions for success or failure, and updating the UI on return. Let’s take
this a step further by implementing a feature that automatically saves a user’s pro-
file as they edit their information.

AutoSave pattern
The simplicity and nature of this service provide you with a great opportunity: the
ability to save user profile settings automatically. With the use of a timer, you can
periodically save profile information. This added value will be appreciated by
users who lose their Internet connection intermittently or forget to click the Save
button on the form (it does happen).

 To integrate this useful pattern, you kick off the timer after the profile settings
are originally loaded. Then, when the interval for the timer elapses, you call the
same saveProfile function you used earlier:

function onLoadCompleted(numProperties, userContext, methodName){
 ...
 window.setInterval(tryAutoSave, 10000);
}

Listing 5.26 Save function, which updates a user’s profile information

Using ASP.NET application services 191
function tryAutoSave(){
 saveProfile();
}

This is a nice feature that doesn’t require a lot of coding. This leads us to the last
service, roles, which grants you the ability to inquire about the roles a user has
been assigned.

5.4.4 Roles: an Orcas preview

The next version of the ASP.NET AJAX framework will include another built-in appli-
cation service: roles. The simplest way to demonstrate how to use the role service is
to designate a portion of the page that only certain users in a role can view.

NOTE The built-in roles service isn’t part of the 1.0 release of ASP.NET AJAX.
This section provides a sneak peek at what is to come in the next version.
This version will be baked into the next release of Visual Studio, code-
named Orcas. At the time of this writing, downloads for Orcas are avail-
able here: http://msdn2.microsoft.com/en-us/vstudio/aa700831.aspx.

Before we begin, update the web.config file for this service by adding another sec-
tion for the service under the sectionGroup area:

<sectionGroup name="webServices"...
 ...
 <section name="roleService"
 type="System.Web.Configuration.ScriptingRoleServiceSection,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" requirePermission="false"
 allowDefinition="MachineToApplication"/>

Next, you need to enable the service along with the others:

<system.web.extensions>
 <scripting>
 <webServices>
 ...
 <roleService enabled="true" />
 </webServices>
 </scripting>
</system.web.extensions>

That’s all you need for the configuration portion. For the UI, add a div element
named adminView to the contact information page. By default, you hide this ele-
ment by setting its display style to none:

<div id="adminView" style="display: none;">
 Only admins can see this message!
</div>

http://msdn2.microsoft.com/en-us/vstudio/aa700831.aspx
http://msdn2.microsoft.com/en-us/vstudio/aa700831.aspx

192 CHAPTER 5

Making asynchronous network calls
After the page loads, you can retrieve the current user’s roles and make the admin-
View element visible if they’re in the designated role:

function pageLoad(){
 $get("address1").focus();
 ...
 loadRoles();
}

function loadRoles(){
 Sys.Services.RoleService.load(onLoadRolesCompleted,
 onLoadRolesFailed, null);
}

function onLoadRolesCompleted(result, userContext, methodName){
 if (Sys.Services.RoleService.isUserInRole("Admin")){
 $get("adminView").style.display = "block";
 }
}

function onLoadRolesFailed(error, userContext, methodName){
 alert(error.get_message());
}

The first task is to call the B load function in the service. When it returns success-
fully, you check to see if the user is in the Admin role by calling the C isUserIn-
Role function. An alternative would be to retrieve a comma-delimited list of roles
from the roles property:

Sys.Services.RoleService.get_roles();

This requires you to then split and parse the list—which for a different scenario
might be more efficient than calling isUserInRole repeatedly. Because you’re
only comparing against a single role, the original approach makes more sense.

 Working with the ASP.NET application services is simple. Because they’re noth-
ing more than built-in Web Services, the same patterns we covered earlier—call-
backs, user context, timeout, and so on—apply here as well.

5.4.5 Message board application

We’ve created a sample message board application that combines all the topics dis-
cussed in this chapter, along with some content from chapter 9. The source code for
the message board application is available on the book’s website at http://
www.manning.com/gallo. We mention it here as a reminder that you can download
the code from the site for additional examples. Figure 5.14 shows the application
in action.

Call load
function

B

Call isUserInRole
function C

Summary 193
5.5 Summary

In this essential chapter, we covered the most primitive and influential pattern used
in Ajax programming: making asynchronous calls from the browser to the server.
The plumbing work needed to accomplish this task, along with the abstraction of
cross-browser discrepancies, are handled for you by the ASP.NET AJAX framework.

 With the help of Web Service proxies generated by the framework, you can use
local Web Services as a business layer to the applications that run on the browser.
You can also use local Web Services to facilitate communication with other remote
servers and services on the web. This chapter covered the most typical and recom-
mended approach for building Ajax applications.

 Although this chapter was dedicated solely to client-centric programming with
ASP.NET AJAX, the next few chapters return to the server-side element of the
framework. To become a solid ASP.NET AJAX developer, you must be comfortable
with both realms of the architecture. In the next chapter, we’ll revisit the
UpdatePanel control and take a thorough walk through its features.

Figure 5.14 The message board application demonstrates a complex, real-world example of how to use
some of the patterns discussed in this chapter.

Partial-page rendering
with UpdatePanels
In this chapter:
■ Partial page updates
■ Triggers and modes
■ Nesting and repeating UpdatePanels
■ Creating a live GridView filter
194

With great power comes great responsibility 195
One of the most fascinating controls in the ASP.NET AJAX framework is the
UpdatePanel. This new control replaces the need for a page to refresh during a
postback. Only portions of a page, designated by the UpdatePanel, are updated.
This technique is known as partial-page rendering and can be highly effective in
improving the user experience.

 At the end of chapter 1 and in segments of chapter 4, you got a glimpse into
how the UpdatePanel works and how simple it is to apply to existing ASP.NET
applications. In this chapter, the first of two dedicated solely to the UpdatePanel,
we’ll take you through a series of examples that demonstrate how to use the con-
trol effectively. In the process, you’ll gain some insight into how it works together
with the ScriptManager control to manage and orchestrate partial-page updates.
By the end of this chapter, you’ll have a solid understanding of how to apply the
UpdatePanel correctly to enhance ASP.NET applications.

 Just like any other powerful tool, the UpdatePanel requires care and knowl-
edge to fully exploit its influence on a page’s performance and behavior. We
begin this chapter with some thoughts on its power and responsibilities.

6.1 With great power comes great responsibility

The most amazing thing about the UpdatePanel is how easy it is to use. With a few
lines of code, and no client script, the behavior of a page is instantly transformed
by its presence. If it isn’t employed correctly, performance and the end-user expe-
rience can be diminished. Understanding how to use the UpdatePanel effectively,
and how and why the control works the way it does, is a vital step toward creating
superior and more engaging web pages.

 After you become familiar with the UpdatePanel control, it will become one of
those tools you can’t live without. We liken it to a Tivo or digital video recorder
(DVR)—before they came along, most of us didn’t know what we were missing.
Now that we own these appliances, we can’t imagine life without them. To fully
appreciate this, let’s take a step back and see how the UpdatePanel came to be
and why it was created.

6.1.1 Evolution of the UpdatePanel

For years, programming with the XMLHttpRequest object has been the most
commonly used approach for communicating with the server from client-side
script. The complexities involved in coding those types of applications scared
away a lot of developers. To assist, the overall scripting model in ASP.NET 2.0 was
significantly enhanced to introduce the idea of script callbacks—a way for server

196 CHAPTER 6

Partial-page rendering with UpdatePanels
controls to communicate with client-side scripts between callbacks. This model
was powerful because it offered access to the state of all the controls on the page
during a callback. Unfortunately, many developers found the model difficult to
work with, and numerous concerns were raised. The lack of support for passing
complex types as parameters to the server (only strings were allowed) made the
prototype too rigid and exposed its limitations. Developers began to look else-
where for solutions.

 In an effort to address these concerns, members of the ASP.NET team began
work on a communication library built on top of the callbacks. The primary objec-
tive of the library was to simplify the use of callbacks and to provide a rich set of
APIs for enabling the exchange of complex and simple types between the server
and client. From this library came a control called the RefreshPanel. The purpose
of the RefreshPanel was to offer a server control that refreshed the contents of a
page without a page refresh. Out of this hard work, the UpdatePanel emerged,
with deeper integration into the page lifecycle and a more transparent footprint
on the page.

NOTE A callback is a piece of code that is passed in as a parameter or argu-
ment to other code. The other piece of code can call the callback code
(usually a function) at any time, even numerous times, in response to
some processing.

With the history lesson out of the way, we can begin probing the UpdatePanel con-
trol by first looking at a simple example of its use. If you’ve used the control before
or are familiar with its basics features, then skipping to section 6.2 will be the most
logical step for you. If this is your first encounter with the UpdatePanel, read on to
discover how you can use it to solve a common problem: the page refresh.

6.1.2 A simple example

Recently, a loyal and happy customer of yours requested that you develop an online
poll feature for her company’s website. The idea was that users could fill out the
weekly poll on the site, and the company could then collect the information to
learn more about their customers. You decided to implement the feature as a user
control, and you placed it on the right column of the home page. Figure 6.1 shows
the page in a state where the user has yet to complete the online poll.

 When a user completes the online poll and clicks the Submit button, a post-
back occurs; the page refreshes while the user selection is recorded by the server

With great power comes great responsibility 197
and a new page is served to the browser. Figure 6.2 shows the online poll after the
user has completed it.

 As the site’s traffic increases and weekly poll feature grows in popularity (man,
you’re good!), the site begins to slow down considerably. After some research, it
becomes apparent that limited bandwidth and the stress of loading the entire
page after each online poll is submitted are the main causes of the site’s inade-
quate performance. This time, the company has approached you in search of sug-
gestions for alleviating the stress recently placed on the site. They have made it
clear that they would like to change the site as little as possible and are in search
of a solution that is simple and easy to manage.

 Your first thought is to use an IFRAME element. IFRAME stands for inline frame;
this element is commonly used to include external objects such as HTML documents
in a page. If you move the online poll feature to its own page and then host it in an
IFRAME, only the contents in the frame will be posted back to the server. This solu-
tion lessens the strain put on the server, but it still causes that portion of the page

Figure 6.1 The online poll control in a state before any user interaction

198 CHAPTER 6

Partial-page rendering with UpdatePanels
to reload and flicker in the process. For aesthetic reasons, this solution isn’t accept-
able to the customer.

 With the IFRAME not returning pleasing results and the use of pop-up windows
being out of the question, you decide to explore an Ajax solution by making a
request to the server using the XMLHttpRequest object and then updating por-
tions of the page dynamically from the client (with JavaScript). This approach
requires you to abandon the user control and move most of the logic from the
server to the client. It also introduces the effort of managing browsers that don’t
support the XMLHttp protocol and writing the online poll logic in two areas to
compensate (once in JavaScript, again on the server).

 So far, this seems like the most reliable solution, but it leaves you wondering if
there is a better option.

 At last, you decide to give ASP.NET AJAX a try. You start by purchasing a copy of
ASP.NET AJAX in Action (a wise choice). You realize that the solution you’re looking

Figure 6.2 Feedback from the online poll after it has been completed

With great power comes great responsibility 199
for is possible with the UpdatePanel control. Listing 6.1 shows a portion of the
markup before adding the UpdatePanel to the page.

<%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="SimpleExample.aspx.cs"
 Inherits="SimpleExample" %>
<%@ Register Src="~/UserPoll.ascx" TagPrefix="demo"
 TagName="UserPoll" %>

...

 <div id="masthead">

 <img src="images/header.png" alt="Emily's Flowers"
 style="border: 0px;" />

 </div>
 ...

 <div id="container">
 <div id="page_content">
 ...
 </div>
 <div id="right_col">
 <demo:UserPoll ID="FlowerPoll" runat="server" />
 </div>
 </div>

Listing 6.2 shows the same code with the addition of the ScriptManager and
UpdatePanel controls. With these quick and minor updates, the next time the
user fills out the online poll, the portion of the page encapsulated by the
UpdatePanel is updated dynamically instead of a page refresh occurring.

<%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="SimpleExample.aspx.cs"
 Inherits="SimpleExample" %>
<%@ Register Src="~/UserPoll.ascx" TagPrefix="demo"
 TagName="UserPoll" %>

<asp:ScriptManager ID="ScriptManager1" runat="server" />

Listing 6.1 Markup for the home page before adding the UpdatePanel

Listing 6.2 Adding the ScriptManager and UpdatePanel to replace the page refresh
 with a partial-page update

The online
poll control

Required
ScriptManager

200 CHAPTER 6

Partial-page rendering with UpdatePanels
...

 <div id="masthead">

 <img src="images/header.png" alt="Emily's Flowers"
 style="border: 0px;" />

 </div>
 ...

 <div id="container">
 <div id="page_content">
 ...
 </div>
 <div id="right_col">
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <demo:UserPoll ID="FlowerPoll" runat="server" />
 </ContentTemplate>
 </asp:UpdatePanel>
 </div>
 </div>

Amazingly, that is all you needed to do to keep the page refresh from taking
place. A postback still happens, but it takes place asynchronously (for more about
asynchronous operations, see chapter 1). Best of all, the hard work needed to
accomplish this was done for you.

TIP A common misconception about the UpdatePanel is that it enables a
section of a page to be partially rendered without a postback. The truth
is, a postback still occurs, and the price of going through the entire page
lifecycle comes with it. Without a postback, none of this would be possi-
ble, and the application logic would have to change. Instead, an asynchro-
nous postback occurs, and the only action that is replaced from the
user’s perspective is the full-page refresh. Throughout this book, we’ll
make a conscious effort to distinguish between a page refresh and a
postback. Before the UpdatePanel, the two were incorrectly considered
to be the same thing.

This simple example should give you a glimpse into what the UpdatePanel can
accomplish. Now, we’ll take a closer look at the control—its properties, methods,
and limitations.

UpdatePanel
enables
partially
updated region

Getting to know the UpdatePanel 201
6.2 Getting to know the UpdatePanel

This section focuses on the basics of the UpdatePanel. Through a series of small
and helpful examples, you’ll gain an understanding of its core components. This
section also covers how the UpdatePanel works with the ASP.NET page lifecycle to
perform partial-page updates. In order for partial-page updates to occur, you
need content, which brings us to the first step in using the UpdatePanel: specify-
ing which content to update.

6.2.1 Content for the UpdatePanel

All content that is added to the UpdatePanel is a candidate for partial-page ren-
dering. When content is added to the panel, either declaratively or programmati-
cally, that content can be rendered (updated) when an asynchronous postback
occurs. To demonstrate, let’s walk through a few quick examples.

 Listing 6.3 demonstrates how content is added declaratively to an UpdatePanel
by placing it in a property called ContentTemplate.

<asp:ScriptManager ID="ScriptManager1" runat="server" />
<asp:UpdatePanel ID="UpdatePane11" runat="server">
 <ContentTemplate>
 <div>
 Last Updated: <%= DateTime.Now.ToLongTimeString() %>
 </div>
 <div>
 <asp:Button ID="Update" runat="server" Text="Update" />
 </div>
 </ContentTemplate>
</asp:UpdatePanel>

In this example, inline code is used to display the current time. An ASP.NET But-
ton control is declared to demonstrate what happens when a postback occurs.
The Button control, by default, raises a postback when it’s clicked. Because this
control is placed in the ContentTemplate tag, it can be considered a child control
of the UpdatePanel. When this example is executed and the button is clicked, the
time displayed on the page is updated without a page refresh. Running the exam-
ple produces the output shown in figure 6.3.

Listing 6.3 Declaratively adding controls to the UpdatePanel

Current time

Button to
invoke postback

202 CHAPTER 6

Partial-page rendering with UpdatePanels
Subsequent clicks of the Button on the form continue to update the current time
dynamically. This works by replacing the traditional postback with an asynchronous
postback that the ScriptManager intercepts. During this type of postback, updates
are applied to the page by injecting the necessary JavaScript that renders the con-
tents in the UpdatePanel.

NOTE The UpdatePanel class has a private property called ChildControls,
which is the type of a privately sealed class called SingleChildControl-
Collection. When the page is loaded, the controls declared in the Con-
tentTemplate tag are added to the collection of controls in the
ChildControls property. Then, when an asynchronous postback occurs,
the ScriptManager initializes the triggers on each UpdatePanel to invoke
its rendering. Triggers will be covered later in the chapter.

As an alternative, you can add content added to an UpdatePanel programmati-
cally. Listing 6.4 demonstrates how to programmatically add a control to the
UpdatePanel.

protected void Page_Load(object sender, EventArgs e)
{
 Button button1 = new Button();
 button1.ID = "Button1";
 button1.Text = "Update";

 Label label1 = new Label();
 label1.ID = "Label1";

Listing 6.4 Adding a control to the UpdatePanel programmatically

Figure 6.3 Simple ContentTemplate example

Getting to know the UpdatePanel 203
 label1.Text = string.Format("Updated at: {0} ",
 DateTime.Now.ToLongTimeString());

 UpdatePanel1.ContentTemplateContainer.Controls.Add(label1);
 UpdatePanel1.ContentTemplateContainer.Controls.Add(button1);
}

A Button and a Label control are both programmatically added to the UpdatePanel
by means of a property called ContentTemplateContainer. This approach is ideal
for controls that are added during runtime, as opposed to controls added declara-
tively through markup. Because controls added this way aren’t persisted, this is
done on each Page_Load occurrence.

 This should give you a grasp of how content is specified for partial updates
with an UpdatePanel. Understanding this fundamental concept is extremely
important. Once you’ve declared the content, you want some control over when it
updates; so, you need to become familiar with the UpdateMode property.

6.2.2 Update modes

The UpdateMode property determines under what conditions the contents of an
UpdatePanel are rendered. By default, this property is set to Always, which signi-
fies that the contents are rendered on each and every postback, regardless of what
control or UpdatePanel it originated from.

 The preferred setting is Conditional, which indicates to the ScriptManager
that the UpdatePanel should render its contents only if one of the following con-
ditions are met:

■ A child control of the UpdatePanel invokes a postback.

■ A registered trigger, such as a button click outside the UpdatePanel, is
invoked (we’ll explain this in more detail when we talk about triggers).

■ The Update method for the UpdatePanel is called.

To demonstrate how this setting works, let’s extend the previous example by add-
ing an additional UpdatePanel to the page with similar contents. In the second
panel, you set the UpdateMode property to Conditional. The latest revision to the
code is shown in listing 6.5.

Add to
child
controls

204 CHAPTER 6

Partial-page rendering with UpdatePanels
<asp:ScriptManager ID="ScriptManager1" runat="server" />
<asp:UpdatePanel ID="UpdatePane11" runat="server">
 <ContentTemplate>
 <div>
 Last Updated: <%= DateTime.Now.ToLongTimeString() %>
 </div>
 <div>
 <asp:Button ID="Update" runat="server" Text="Update" />
 </div>
 </ContentTemplate>
</asp:UpdatePanel>
<hr />

<asp:UpdatePanel ID="UpdatePanel2" runat="server"
 UpdateMode="Conditional">
 <ContentTemplate>
 <div>
 Last Updated: <%= DateTime.Now.ToLongTimeString() %>
 </div>
 <div>
 <asp:Button ID="Update2" runat="server" Text="Update" />
 </div>
 </ContentTemplate>
</asp:UpdatePanel>

The results after clicking the button in the first UpdatePanel are shown in figure 6.4.

Listing 6.5 Setting the UpdateMode property to Conditional

Conditional
updates only

Figure 6.4 The results of an asynchronous postback invoked from the first
UpdatePanel. The second UpdatePanel isn’t updated because its UpdateMode
is set to Conditional and none of its conditions have been met.

Getting to know the UpdatePanel 205
TIP Setting the UpdateMode property to Always should be considered the last
option for updating a region dynamically. The point of the UpdatePanel
is to reduce the amount of data being passed down from the server by
passing in only the contents that need to be updated. Instead of setting
the property to Always, you should make it a habit to initially set it to
Conditional and let a case for Always present itself when applicable.
The UpdateMode property is set to Always by default to provide an out-of-
the-box development experience for the creator.

The next time you run the application and click the button in the first panel (the
one set to Always), notice that only the contents for that panel are updated.
Because you’ve set the UpdateMode for the second panel to Conditional, it
doesn’t update because none of its conditions have been met.

 If you click the button in the second panel (the one set to Conditional),
notice that the contents of both panels are updated. This occurs because the post-
back was invoked by one of its child controls. Because the first panel’s mode is set
to Always, it updates for every postback. If possible, take the time to manipulate
these settings and become familiar with how they work.

 You’re making good progress. Now that you’re applying partial-page updates,
it would be beneficial for you to understand how those updates are initially
applied.

6.2.3 Render modes

When an UpdatePanel initially renders its contents, it places it in a <div> or
 HTML tag. Subsequent postbacks look for the ID of the UpdatePanel to
apply additional rendering from JavaScript. The RenderMode property determines
which HTML tag is used when the initial rendering occurs. The default setting is
Block, which correlates to the <div> tag. The other setting is Inline, which is
associated with a tag. Based on the layout of the page and the location of
the UpdatePanel, one setting may be more ideal than the other. To illustrate their
differences, consider the example in listing 6.6.

<asp:ScriptManager ID="ScriptManager1" runat="server" />

<p>
 Last Updated:
 <asp:UpdatePanel ID="UpdatePanel1" runat="server"
 RenderMode="Inline">
 <ContentTemplate>
 <%= DateTime.Now.ToLongTimeString() %>

Listing 6.6 Rendering the UpdatePanel’s contents as a <div> or tag

Render as

206 CHAPTER 6

Partial-page rendering with UpdatePanels
 </ContentTemplate>
 </asp:UpdatePanel>
</p>

<p>
 Last Updated:
 <asp:UpdatePanel ID="UpdatePanel2" runat="server"
 RenderMode="Block">
 <ContentTemplate>
 <%= DateTime.Now.ToLongTimeString() %>
 </ContentTemplate>
 </asp:UpdatePanel>
</p>

The contents of both UpdatePanel controls are nearly identical. They differ only
in their settings of the RenderMode property. Figure 6.5 shows the difference
between how each UpdatePanel renders its contents.

 In the first panel, the tag is used to render the contents of the panel
inline. The second panel uses a <div> tag to define a division or section in a
document, resulting in the UpdatePanel’s contents being placed below the pre-
vious contents.

 As you learn how the UpdatePanel is used, it’s just as important to understand
how it works. An essential piece of this puzzle is examining its relationship with the
ASP.NET page lifecycle.

Render as
<div>

Figure 6.5
The results of two
UpdatePanel controls
with identical content
but different RenderMode
settings: the first set
to Inline, the second
to Block.

Getting to know the UpdatePanel 207
6.2.4 ASP.NET page lifecycle

In ASP.NET, when a request is made for a web page, an instance of the Page class is
created. The class goes through a series of steps to process the request before it’s
destroyed. These steps include initialization, instantiating controls, rendering the
UI. The process of going through these steps and firing events along the way, is
known as the page lifecycle.

 It’s important for every ASP.NET developer to understand the events that occur
in the page lifecycle. In the case of the UpdatePanel, being aware of when certain
actions take place is critical to understanding how the control works. Table 6.1
shows the events in the page lifecycle that are closely tied to the UpdatePanel, and
what measures the control takes to plug itself in to the page.

TIP Custom control developers and page developers who wish to extend exist-
ing controls must be intimately familiar with the page lifecycle events in
order to correctly initialize, maintain state, and execute control actions.
For more information about the ASP.NET page lifecycle, see http://
msdn2.microsoft.com/en-us/library/7949d756-1a79-464e-891f-904b1cf
c7991.aspx.

You should have a general, high-level grasp of what goes on during the page lifecycle
with the UpdatePanel. Examining the stages in the cycle should give you insight as
to when certain actions are permitted. Speaking of events, you’ve built a solid foun-
dation and will now learn about a important part of the UpdatePanel: triggers.

Table 6.1 Events in the ASP.NET page lifecycle that the UpdatePanel control interacts with

Page event Description UpdatePanel actions

Init This is the first step in the lifecycle.
It occurs when the page is initialized.

Each UpdatePanel on the page is registered
with the ScriptManager control.

Load After initialization is complete, this
event is fired when the page is first
loaded.

If the page is in an asynchronous postback, it
initializes all the triggers for each UpdatePanel
on the page.

PreRender This occurs before the page is about
to render.

Sanity checking is done here to ensure that
all the settings for each UpdatePanel on the
page are set correctly. For example, if the
ChildrenAsTriggers property is set to
True, the UpdateMode must be set
to Conditional.

Unload This event is fired after the page is
removed from memory but hasn’t yet
been disposed.

Each UpdatePanel responsibly unregisters itself
with the ScriptManager.

http://msdn2.microsoft.com/en-us/library/7949d756-1a79-464e-891f-904b1cfc7991.aspx
http://msdn2.microsoft.com/en-us/library/7949d756-1a79-464e-891f-904b1cfc7991.aspx

208 CHAPTER 6

Partial-page rendering with UpdatePanels
6.3 Triggers

A trigger is an event coming from a control that causes an UpdatePanel to refresh
its contents. The following types of triggers can be associated with an UpdatePanel:

■ AsyncPostBackTrigger—Invokes an asynchronous postback for the associ-
ated UpdatePanel and any other UpdatePanels on the form that have the
UpdateMode property set to Always

■ PostBackTrigger—Invokes a traditional postback to the page that causes
the page to refresh

Similar to specifying content for an UpdatePanel, you can add triggers declaratively
or programmatically. Let’s start by examining the most common trigger you’ll use:
an asynchronous trigger.

6.3.1 Asynchronous triggers

Each child control of an UpdatePanel is by default an asynchronous trigger. This
means postbacks resulting from interaction with these controls are replaced with
asynchronous postbacks that invoke the UpdatePanel to render its contents. But
what about controls that haven’t been specified as content in an UpdatePanel?
For example, say you want to refresh the contents of an UpdatePanel based on the
click event of a button that isn’t a child control.

 This can be accomplished by registering the control as an asynchronous trig-
ger. Listing 6.7 demonstrates how to achieve this programmatically when the
UpdatePanel has its UpdateMode set to Conditional.

protected override void OnInit(EventArgs e)
{
 base.OnInit(e);

 AsyncPostBackTrigger outsideTrigger = new AsyncPostBackTrigger();
 outsideTrigger.ControlID = "Button1";
 outsideTrigger.EventName = "Click";
 UpdatePanel1.Triggers.Add(outsideTrigger);
}

If you go back to the page lifecycle in the previous section, you’ll notice that during
the Load event, the ScriptManager initializes the triggers for each UpdatePanel on
the page. This tells you that any triggers you want to add to an UpdatePanel must

Listing 6.7 Programmatically registering a trigger with an UpdatePanel

Must be done
during InitB

Create new
trigger

C

Add to trigger collection D

Triggers 209
be added before the Load event is fired. Registering a trigger in the B Init event
seems like the most logical place. To do so, you need to create a new C asynchro-
nous trigger and add it to the triggers collection of that D UpdatePanel.

 An AsyncPostBackTrigger has two properties. The first is ControlID, which is
the ID of the control that will raise the event. The second, optional, property is the
EventName, which as you can guess, is the name of the event that the control raises
for an asynchronous postback. If EventName isn’t initialized, it defaults to the event
that the control is most known for (for example, the click event for a button).

 This approach is used primarily for adding triggers to a panel that has Update-
Mode set to Conditional. It also works for panels that have UpdateMode set to Always,
but another approach is available for those situations that makes more sense:

ScriptManager1.RegisterAsyncPostBackControl(this.FindControl
 ➥("Button1"));

Calling the RegisterAsyncPostBackControl method of the ScriptManager regis-
ters the postback for all the UpdatePanel controls on the form that have Update-
Mode set to Always. Panels that have the property set to Conditional aren’t
rendered when this asynchronous postback occurs.

 Adding triggers declaratively is even simpler; see listing 6.8.

<asp:UpdatePanel ID="UpdatePanel2" runat="server"
 UpdateMode="Conditional">
 <ContentTemplate>
 <div>
 Last Updated: <%= DateTime.Now.ToLongTimeString() %>
 </div>
 <div>
 <asp:Button ID="Update2" runat="server" Text="Update" />
 </div>
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="Button1"
 EventName="Click" />
 </Triggers>
</asp:UpdatePanel>

<hr />
<asp:Button ID="Button1" runat="server" Text="Update" />

Adding a trigger declaratively is as easy as adding it to the Triggers collection of
the UpdatePanel.

Listing 6.8 Controls outside the UpdatePanel’s declaration invoking asynchronous
 postbacks

Add button click to
trigger collection

Not a child control

210 CHAPTER 6

Partial-page rendering with UpdatePanels
 This should be straightforward so far; we’ve introduced the asynchronous trig-
ger and how to add it programmatically and declaratively. But what about controls
for which you want a normal postback? For example, what if you want a button
that is a child of an UpdatePanel to perform a normal postback, resulting in a
page refresh when it’s clicked? This brings us to the other type of trigger you can
register with the panel: a postback trigger.

6.3.2 Postback triggers

Postback triggers work like traditional postbacks in ASP.NET. They cause the page to
refresh and upload its contents to the server while a new page is eventually returned
to the client. In some situations, you may want this behavior for controls that inher-
ently become asynchronous triggers because of their association with an Update-
Panel. For example, when a control is a child of the UpdatePanel, by default it
becomes an asynchronous trigger and thus replaces any traditional postbacks that
would have occurred.

 Registering a postback trigger is as easy as an asynchronous trigger. Listing 6.9
demonstrates how to register a child control as a postback trigger programmatically.

protected override void OnInit(EventArgs e)
{
 base.OnInit(e);

 PostBackTrigger trigger = new PostBackTrigger();
 trigger.ControlID = "Button1";
 UpdatePanel1.Triggers.Add(trigger);
}

During the Init event, an instance of a PostBackTrigger is created and initial-
ized to a child in the UpdatePanel by setting its ControlID property. Next, you
add it to the collection of UpdatePanelTrigger items in the panel’s trigger collec-
tion to inform the ScriptManager that this control performs traditional postbacks.

NOTE Each UpdatePanel has a collection of triggers of a type called UpdatePan-
elTriggerCollection. This collection contains items of an abstract class
called UpdatePanelTrigger. Because the class is abstract, which means
you can’t create an instance of it, you can only add items that are of type
PostBackTrigger or AsyncPostBackTrigger, because they both inherit
from UpdatePanelTrigger.

Listing 6.9 Declaring a child control as a postback trigger

New postback
trigger

Add button to
trigger collection

Triggers 211
Once more, adding the trigger declaratively is as easy as with an asynchronous
trigger; see listing 6.10.

<asp:UpdatePanel ID="UpdatePanel1" runat="server" UpdateMode="Always">
 <ContentTemplate>
 <%= DateTime.Now.ToLongTimeString() %>
 <asp:Button ID="Button1" runat="server" Text="Update" />
 </ContentTemplate>
 <Triggers>
 <asp:PostBackTrigger ControlID="Button1" />
 </Triggers>
</asp:UpdatePanel>

Excluding the EventName property, a PostBackTrigger is added programmati-
cally and declaratively the same way as an AsyncPostBackTrigger. This covers
how triggers are specified with an UpdatePanel.

 What we have yet to cover is how to manually distinguish when triggers are
fired. In some cases, you may not want the contents of an UpdatePanel to be ren-
dered when an asynchronous postback occurs, even when one of its conditions
has been met (see Conditional UpdateMode, earlier in the chapter). In addition,
you may want to update the contents of another UpdatePanel on the page when a
one panel is updated.

6.3.3 Manual triggers

The ChildrenAsTriggers property determines whether postbacks from a child
control in an UpdatePanel result in its contents being refreshed. By default, this
property is set to True and can be set to False only when the UpdateMode is set to
Conditional. Attempting to do so without this condition results in an InvalidOp-
erationException being thrown by the ScriptManager during the page’s PreRen-
der event.

 Setting the property to False allows asynchronous postbacks to occur, but the
ScriptManager bypasses any updates to the UpdatePanel that are associated with
the postback. Listing 6.11 shows how ChildrenAsTriggers is used declaratively.

Listing 6.10 Registering a child control as a control that raises a normal postback

Reloads
entire page

212 CHAPTER 6

Partial-page rendering with UpdatePanels
<asp:UpdatePanel ID="UpdatePanel1" runat="server"
 UpdateMode="Conditional"
 ChildrenAsTriggers="False">
 <ContentTemplate>
 <%= DateTime.Now.ToLongTimeString() %>
 <asp:Button ID="Button1" runat="server" Text="Update"
 OnClick="Update_Click" />
 </ContentTemplate>
</asp:UpdatePanel>

Programmatically, you can set this property after the Init event, giving you the
luxury of waiting for other events in the page lifecycle to occur before determin-
ing if this property should be set:

UpdatePanel1.ChildrenAsTriggers = true;

NOTE The ScriptManager is responsible for orchestrating the partial-page
updates of each UpdatePanel on the page. When it comes time to update
the page, it iteratively walks through the list of UpdatePanel controls on
the page and invokes the triggers in each one to render its contents. In
this case, the internal Initialize method that invokes a trigger isn’t
called, and the contents for the UpdatePanel remain the same.

The Update method
This brings us to the Update method of the UpdatePanel. With the Update method,
you can force the contents of an UpdatePanel to render during an asynchronous
postback. This includes other UpdatePanel controls on the page, as well, but these
panels must have their UpdateMode property set to Conditional in order to success-
fully update. Listing 6.12 demonstrates an event raised from one UpdatePanel
updating itself and other panels on the page.

protected void Update_Click(object sender, EventArgs e)
{
 UpdatePanel1.Update();
 UpdatePanel2.Update();
 UpdatePanel3.Update();
}

The first Update method is called for the UpdatePanel that originated the asyn-
chronous postback. Because the ChildrenAsTriggers property was set to False,

Listing 6.11 Setting ChildrenAsTriggers to false so as not to initialize triggers

Listing 6.12 Manually updating a page by calling its Update method

Reloads
entire page

Update itself

Update other
panels on page

Advanced techniques 213
the panel’s contents can be updated only when its Update method is called. The
next few lines call the Update method for other panels on the page to render their
contents.

 The previous sections will serve as a core reference to how the UpdatePanel is
used, when you read later chapters. It’s time to explore a few more advanced sce-
narios where you can apply the UpdatePanel.

6.4 Advanced techniques

So far, we’ve covered the basics of the UpdatePanel, including its properties, meth-
ods, and usage. Most of the time, using the UpdatePanel is as simple as applying
some of the techniques demonstrated earlier. But sometimes, more complex situ-
ations arise where you can use the UpdatePanel in a more creative fashion.

6.4.1 Repeating UpdatePanels

When you’re working with repeatable data structures, such as a Repeater, Data-
List, or GridView, it’s usually best to place the entire control in an UpdatePanel
instead of each repeated item. However, in some cases you may want a panel
around the repeatable item instead. Let’s take, for example, a list of stocks in your
portfolio. Next to each stock listing, you want a button that updates only that
stock price. Listing 6.13 shows the markup listing of the portfolio application.

<asp:ScriptManager ID="ScriptManager1" runat="server" />

<h1>My Portfolio</h1>

<asp:XmlDataSource ID="data" runat="server">
<Data>
<stocks>
 <stock name="STOCK1" value="STOCK1" />
 <stock name="STOCK2" value="STOCK2" />
 <stock name="STOCK3" value="STOCK3" />
 <stock name="STOCK4" value="STOCK4" />
</stocks>
</Data>
</asp:XmlDataSource>

<div style="width: 200px; border: 1px solid gray; padding: 5px;">
<asp:Repeater ID="Stocks" runat="server" DataSourceID="data"
DataMember="stock">

Listing 6.13 Repeating an UpdatePanel

List of
stocks

B

214 CHAPTER 6

Partial-page rendering with UpdatePanels
<ItemTemplate>
 <asp:UpdatePanel ID="UpdatePanel1" runat="server"
 UpdateMode="Conditional">
 <ContentTemplate>
 <asp:Label runat="server" ID="StockName"
 Text='<%# Eval("name") %>' />
 <asp:Button runat="server" ID="UpdateStock" Text="Update"
 OnClick="UpdateStock_Click" />
 <asp:Label runat="server" ID="StockPrice" Text="" />
 </ContentTemplate>
 </asp:UpdatePanel>
</ItemTemplate>
<SeparatorTemplate>
 <hr style="border: 1px dashed gray;" />
</SeparatorTemplate>
</asp:Repeater>
</div>

In this example, an B XmlDataSource stores a simple list of stocks in the portfo-
lio. In the ItemTemplate of the Repeater is the C UpdatePanel control. The
panel contains a label for the stock name, a button to update the price, and
another label to display the price. The server-side code that updates the price is
shown in listing 6.14.

protected void UpdateStock_Click(object sender, EventArgs e)
{
 Button button = (Button) sender;
 Label price = (Label) button.NamingContainer.FindControl
 ➥("StockPrice");
 Label stock = (Label) button.NamingContainer.FindControl
 ➥("StockName");

 price.Text = LookupStockPrice(stock.Text);
}

private string LookupStockPrice(string name)
{
 string price = "$0.00";
 switch (name)
 {
 case "STOCK1":
 price = "$10.45";
 break;

 case "STOCK2":
 price = "$4.00";
 break;

Listing 6.14 Updating the stock price

Repeating
panelsC

Find
controls

B

Update
stock priceC

Advanced techniques 215
 case "STOCK3":
 price = "$5.58";
 break;

 default:
 break;
 }
 return price;
}

The server-side implementation B finds the controls in the repeated item, then C
calls a private method to look up the stock price and update the label accordingly.
For simplicity, you hard-code the values returned from the lookup method. When
you run the application and select the first three stocks, you get the results shown
in figure 6.6.

 Again, normally it’s best to place an UpdatePanel around a single repeatable
control. In the cases where you want to place it around a repeated item, be con-
scious of the number of items that will be rendered: A strain on performance may
occur after some time with a large number of items in a repeatable control. Sec-
tion 7.3.1 provides more insight into why this happens.

Figure 6.6
Repeating UpdatePanel controls

216 CHAPTER 6

Partial-page rendering with UpdatePanels
6.4.2 Nesting UpdatePanels

In addition to being able to repeat UpdatePanel controls, you can also nest them.
This makes sense only if the UpdateMode property of the outer panel is set to Con-
ditional. For example, consider the nested panel implementation in listing 6.15.

<asp:ScriptManager ID="ScriptManager1" runat="server" />

<div style="border: 1px dashed gray;">
 <asp:UpdatePanel ID="upd1" runat="server"
 UpdateMode="Conditional">
 <ContentTemplate>
 <div>
 Last updated on: <%= DateTime.Now.ToLongTimeString() %>
 <asp:Button ID="bntOuter" Text="Outer" runat="server" />
 </div>
 <div>
 <asp:UpdatePanel ID="upd2" runat="server"
 UpdateMode="Conditional">
 <ContentTemplate>

 Last Updated on: <%= DateTime.Now.ToLongTimeString() %>
 <asp:Button ID="btnInner" Text="Inner"
 runat="server" />
 </ContentTemplate>
 </asp:UpdatePanel>
 </div>
 </ContentTemplate>
 </asp:UpdatePanel>
</div>

In this example, the outer UpdatePanel is appropriately set to conditionally update.
If the UpdateMode property were set to Always instead, there would be no need for
the nested panel, because any updates to the inner panel would also invoke an
update to the outer panel. Take a moment to run the sample and experiment with
setting the outer panel UpdateMode property to Always and back to Conditional.

6.5 Live GridView filter

You should have an overall sense of how the UpdatePanel is used. The examples
you’ve worked through so far demonstrated the simplest cases for each property
and method the UpdatePanel offers. Now that you’ve established this foundation,
let’s have some fun by putting together something a little more useful: a GridView
that you can sort, page, and filter without normal postbacks (page refreshes).

Listing 6.15 Nesting UpdatePanel controls

Outer panel set to
conditional update

Live GridView filter 217
6.5.1 Live GridView filter goals

In ASP.NET 2.0, the GridView is the successor to the frequently used DataGrid con-
trol in ASP.NET 1.1. The GridView is powerful because it comes with built-in sup-
port for paging, sorting, and editing. But with this feature comes a cost—each of
these functions performs a postback to the server. Every time the user sorts a col-
umn or pages through results, he loses his connection with the application as he’s
left waiting for it to be processed.

 The first objective is obviously to stop the page from refreshing each time the
user interacts with it. As you can guess, the solution is trivial with the UpdatePanel.
But what makes this application unique is that it also allows the user to filter the
results of a selected column. This brings us to the second goal. Currently, a user can
filter a column in the GridView by entering text and clicking the Filter button on
the form. Instead of requiring the user to click the Filter button, let’s make the appli-
cation more responsive by countering the user’s keystrokes with on-the-fly filtering.
In other words, you’ll bring the GridView filtering to life by making it more intuitive
and receptive to user actions instead of requiring them to click the Filter button.

 Let’s look at the application. Figure 6.7 shows the site in its initial state—
before any filter has been applied.

Figure 6.7 The GridView in its initial state shows the contents of the Contact table in the
AdventureWorks database.

218 CHAPTER 6

Partial-page rendering with UpdatePanels
If the user enters in some criteria and then clicks the button to invoke the filter,
the column that is currently used for sorting (FirstName by default) is updated
with the filtered results. Figure 6.8 illustrates this effect.

 To effectively relay back to the user the results from the filter, the matched text
found in the column is highlighted (a nice touch). Consequently, each update to
the text box and button click display new filtered results.

 Before you begin integrating the UpdatePanel and enhancing the filter behav-
ior, you should understand how the current application works so you can assess
what changes need to be made.

6.5.2 How does the GridView filter work?

Understanding how the current application works will assist you in deciding what
steps to take next. A good starting point is to take inventory of the elements (or
controls) on the page and how they’re configured.

Figure 6.8 After the user enters text and clicks the Filter button, the contents of the
selected column are filtered and updated.

Live GridView filter 219
NOTE The data used to populate the GridView comes from the Adventure-
Works database. AdventureWorks is a fictitious company created by
Microsoft with the intention of simulating a real-world business. This
example uses SQL Server Express (see appendix A for more information)
but can also be configured for SQL Server 2000 or 2005.

Listing 6.16 contains the entire markup portion of the application before adding
any enhancements.

<%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="BeforeFilter.aspx.cs" Inherits="BeforeFilter" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Live GridView Filter</title>
 <style type="text/css">
 .highlight{
 background-color: yellow;
 }
 </style>
</head>

<body>
 <form id="form1" runat="server">
 <div>
 <div>
 Filter selected column:
 <asp:TextBox ID="FilterText" runat="server" />
 <asp:Button ID="Filter" runat="server" Text="Filter"
 OnClick="Filter_Click" />
 </div>

 <p>
 <asp:GridView ID="GridView1" runat="server"
 AutoGenerateColumns="False"
 DataSourceID="SqlDataSource1"
 AllowPaging="True" AllowSorting="True"
 EmptyDataText="There are no data records to display."
 CellPadding="4" ForeColor="#333333" GridLines="None"
 OnRowDataBound="GridView1_RowDataBound"
 OnPageIndexChanged="GridView1_PageIndexChanged"
 OnSorted="GridView1_Sorted">

Listing 6.16 The application contains a GridView and SqlDataSource configured
 to AdventureWorks.

Filter
criteria

B

Invoke filter
on serverC

Display
contacts

D

Built-in
paging and
sortingE

220 CHAPTER 6

Partial-page rendering with UpdatePanels
 <Columns>
 <asp:BoundField DataField="ContactID" HeaderText="ContactID"
 SortExpression="ContactID" />
 <asp:BoundField DataField="Title" HeaderText="Title"
 SortExpression="Title" />
 <asp:BoundField DataField="FirstName" HeaderText="FirstName"
 SortExpression="FirstName" />
 <asp:BoundField DataField="MiddleName"
 HeaderText="MiddleName"
 SortExpression="MiddleName" />
 <asp:BoundField DataField="LastName" HeaderText="LastName"
 SortExpression="LastName" />
 <asp:BoundField DataField="EmailAddress"
 HeaderText="EmailAddress"
 SortExpression="EmailAddress" />
 <asp:BoundField DataField="Phone" HeaderText="Phone"
 SortExpression="Phone" />
 </Columns>
 <FooterStyle BackColor="#1C5E55" Font-Bold="True"
 ForeColor="White" />
 <RowStyle BackColor="#E3EAEB" />
 <EditRowStyle BackColor="#7C6F57" />
 <SelectedRowStyle BackColor="#C5BBAF" Font-Bold="True"
 ForeColor="#333333" />
 <PagerStyle BackColor="#666666" ForeColor="White"
 HorizontalAlign="Center" />
 <HeaderStyle BackColor="#1C5E55" Font-Bold="True"
 ForeColor="White" />
 <AlternatingRowStyle BackColor="White" />
 </asp:GridView>

 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString=
 "<%$ConnectionStrings:AdventureWorks_DataConnectionString1 %>"
 SelectCommand="SELECT [ContactID], [Title], [FirstName],
 [MiddleName], [LastName], [Suffix], [EmailAddress],
 [Phone] FROM [Person].[Contact]">
 </asp:SqlDataSource>

 </p>
 </div>
 </form>
</body>
</html>

Connection to AdventureWorks F

Live GridView filter 221
The page is simple so far. At the top are B a TextBox and C a Button that work
together to pass in filter criteria to the server. The results are displayed in a D
GridView that has built-in E paging and sorting enabled. The data source for the
GridView is encapsulated in a F SqlDataSource control that retrieves the connec-
tion string for the database from the web.config file.

 This should give you an understanding of how things are displayed. To com-
plete your understanding of how the application manages the filtering and
updates on the form, listing 6.17 shows the entire code for the server-side logic.

using System;
using System.Web;
using System.Web.UI;
using System.Text;
using System.Web.UI.WebControls;

public partial class BeforeFilter : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 GridView1.Sort("FirstName", SortDirection.Ascending);
 }

 protected void GridView1_Sorted(object sender, EventArgs e)
 {
 UpdateFilter();
 }

 protected void GridView1_PageIndexChanged(object sender, EventArgs e)
 {
 UpdateFilter();
 }

 protected void Filter_Click(object sender, EventArgs e)
 {
 UpdateFilter();
 }

 protected void GridView1_RowDataBound(object sender,
 GridViewRowEventArgs e)
 {
 if (e.Row.RowType != DataControlRowType.DataRow)
 return;

Listing 6.17 Applying a filter expression to the data source and updating the results

222 CHAPTER 6

Partial-page rendering with UpdatePanels
 if (String.IsNullOrEmpty(SqlDataSource1.FilterExpression))
 return;

 int colIndex = GetColumnIndex(GridView1.SortExpression);
 TableCell cell = e.Row.Cells[colIndex];

 string cellText = cell.Text;
 int leftIndex = cellText.IndexOf(FilterText.Text,
 StringComparison.OrdinalIgnoreCase);
 int rightIndex = leftIndex + FilterText.Text.Length;

 StringBuilder builder = new StringBuilder();
 builder.Append(cellText, 0, leftIndex);
 builder.Append("");
 builder.Append(cellText, leftIndex, rightIndex - leftIndex);
 builder.Append("");
 builder.Append(cellText, rightIndex,
 cellText.Length - rightIndex);

 cell.Text = builder.ToString();
 }

 private void UpdateFilter()
 {
 string filterExpression = null;

 if (!String.IsNullOrEmpty(FilterText.Text))
 filterExpression = string.Format("[{0}] LIKE '%{1}%'",
 GridView1.SortExpression, FilterText.Text);

 SqlDataSource1.FilterExpression = filterExpression;
 }

 private int GetColumnIndex(string columnName)
 {
 for (int i = 0; i < GridView1.Columns.Count; i++)
 {
 BoundField field = GridView1.Columns[i] as BoundField;
 if (field != null && field.DataField == columnName)
 return i;
 }

 return -1;
 }

}

An interesting pattern is the way the event handlers for paging, sorting, and the
filter button-click events each call a private method called C UpdateFilter.

Highlight
matches

B

Format and
set filter

C

Format filter
expression

D

Live GridView filter 223
Because this logic is called from numerous places, it makes sense that it’s encapsu-
lated into a single function. In this function, the text that the user has entered is
used to format an SQL statement to apply a D filter expression to the data source.
Then, when each row is bound in the GridView, a B highlight is applied to the
relative text in the table cell.

 Now that you’re up to speed about how the application operates, let’s apply the
enhancements that fulfill the goals of making it more responsive and engaging.

6.5.3 Adding Ajax to the GridView filter

Let’s address the postbacks that originate from the GridView first. If you add the
ScriptManager control to the page and wrap the GridView and SqlDataSource con-
trols in an UpdatePanel (see listing 6.18), you get rid of the page refreshes related
to the sort and paging events. Also, to coordinate the updates with the Filter button,
you can add a trigger to the UpdatePanel that correlates to its click event.

<asp:ScriptManager ID="ScriptManager1" runat="server" />
. . .

<asp:Button ID="Filter" runat="server" Text="Filter"
 OnClick="Filter_Click" />
. . .

<asp:UpdatePanel ID="UpdatePanel1" runat="server"
 UpdateMode="Conditional">
 <ContentTemplate>
 <asp:GridView ID="GridView1" runat="server"
 AutoGenerateColumns="False"
 DataSourceID="SqlDataSource1"
 AllowPaging="True" AllowSorting="True"
 . . .
 </asp:GridView>
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="Filter"
 EventName="Click" />
 </Triggers>
</asp:UpdatePanel>

Notice how you set the UpdateMode of the UpdatePanel to Conditional. Again, this
isn’t the default setting—but it should be. By setting the mode to Conditional, you

Listing 6.18 Wrapping the GridView and SqlDataSource within an UpdatePanel

Declare dynamic
content

Associate button
click with panel

224 CHAPTER 6

Partial-page rendering with UpdatePanels
relay to the ScriptManager that the rendering of this fragment of the page needs to
happen only if one of its conditions is met.

 Running the application now shows that you’ve met the first goal of replacing
page refreshes with partial-page updates. What’s left is making the filtering more
responsive to user actions, such as keystrokes in the TextBox.

6.5.4 It’s alive!

Updating the application has drastically enhanced the user experience—but you
can do more. Imagine if you could update the filtered columns as the user was
typing. If you’ve ever captured keystrokes, you already know that this happens in
the browser, not the server. This presents you with a departure: Until now, you’ve
been adding Ajax-like behavior without a single line of JavaScript. As you develop
more complex solutions, you need to write some client-side code to be more effi-
cient and sometimes take control of the client-side application.

 For this application, the first thing you can do is remove the Filter button—it
won’t be needed because you’ll use the keystrokes entered by the user to stimulate
the filtered data (see listing 6.19). On the server side, you need to add a handler for
the TextChanged event of the TextBox, which also calls the UpdateFilter method.

<div>
 Filter selected column:
 <asp:TextBox ID="FilterText" runat="server"
 OnTextChanged="FilterText_TextChanged" />
</div>
 . . .

protected void FilterText_TextChanged(object sender, EventArgs e)
{
 UpdateFilter();
}

You may be wondering why you’re adding server-side logic when we just men-
tioned that you’d be writing JavaScript code to make this happen. The reason is,
the logic that performs the filtering still resides on the server. You need a way to
invoke that logic from the client when the user is typing.

 With the server-side logic in place, you need to bridge the gap between the cap-
turing of the keystrokes on the client and the server-side code that updates the

Listing 6.19 Removing the Filter button and adding the event handler for the
 TextChanged event

Live GridView filter 225
GridView. Listing 6.20 shows the JavaScript to add at the bottom of the page to
make this a reality. You hook into the TextBox’s keydown event to launch a postback
on the server; this calls the UpdateFilter method that refreshes the GridView.

<script type="text/javascript">

 Sys.Application.add_load(page_load);
 Sys.Application.add_unload(page_unload);

 function page_load(){
 $addHandler($get('FilterText'), 'keydown', onFilterTextChanged);
 }

 function page_unload(){
 $removeHandler($get('FilterText'), 'keydown',
 onFilterTextChanged);
 }

 var timeoutID = 0;

 function onFilterTextChanged(e){

 if (timeoutID){
 window.clearTimeout(timeoutID);
 }
 timeoutID = window.setTimeout(updateFilterText, 1000);
 }

 function updateFilterText(){
 __doPostBack('FilterText', '');
 }

</script>

In chapter 2, you were introduced to the application model that the Microsoft Ajax
Library provides for client-side development. This model gives you an opportunity
to write event-driven code on the client, similar to the server-side page lifecycle and
event-handling code that server-side developers have grown accustomed to.

 In this example, you start by registering callback B functions for the browser
load and unload events. When the page loads, you register a handler for the C
keypress event. When the page unloads, you D release that handler to avoid any
leaks (yes, leaks happen in JavaScript too).

Listing 6.20 Hooking into the keydown event to launch a postback on the server

Application
events

B

Register handler C

Release
handler

D

Invoke postback for
TextChanged event

E

226 CHAPTER 6

Partial-page rendering with UpdatePanels
 Now for the tricky stuff—when you register the handler for the keypress
event, you assign it a callback function called onFilterTextChanged. When this
function is called (each time a keypress occurs), E you clear any delays you previ-
ously had with the timer and add another timer delay that ultimately invokes a
postback to the server on behalf of the FilterText TextBox. You also give it a
slight delay so the user can type in a few letters before the contents in the text box
are submitted for the filter.

 Because this is a postback and you want to handle it asynchronously (without a
page refresh), you need to add it to the UpdatePanel’s Triggers collection:

 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="FilterText"
 EventName="TextChanged" />
 </Triggers>

This time, when you run the application, the contents of the GridView are
updated shortly after each update is made to the text box—a cool achievement!
The final results of your hard work are shown in figure 6.9.

Figure 6.9 The results of a filter applied to a GridView as a result of keystrokes entered by the user.

Summary 227
This example demonstrated how easy it is to take an existing ASP.NET application
and improve the user’s experience with partial-page updates in place of traditional
postbacks. In addition, it showed some of the new types of behaviors you can intro-
duce to existing applications that you couldn’t do before—at least, not effectively.

6.6 Summary

In this chapter, we walked through basic examples that demonstrated how to use
the UpdatePanel effectively. We also showed you a case where using JavaScript
with the UpdatePanel can add interactivity and richness for the user. This chapter
provides a solid foundation for understanding how the UpdatePanel works and
should be used.

 There remains a great deal more about the UpdatePanel. We didn’t address its
caveats and limitations, and we have yet to explore its client-side model and how it
can be used with another object called the PageRequestManager. Finally, we only
touched on advanced techniques and how you can use the UpdatePanel to solve
complex situations. The next chapter is dedicated to these issues and continues
our look at how things work under the hood.

Part 2

Advanced techniques

In the second part of the book, we’ll go deep into the client-centric and
server-centric development models introduced in part 1. Chapter 7 returns
to the UpdatePanel control to examine the partial-rendering mechanism on
the client side. Chapter 8 returns to the Microsoft Ajax Library to explore
the client component model. Chapter 9 shows how to wire client compo-
nents to ASP.NET server controls to obtain Ajax-enabled controls. Finally,
chapter 10 introduces the Ajax Control Toolkit, the largest collection of
Ajax-enabled controls available.

Under the hood
of the UpdatePanel
In this chapter:
■ Using the PageRequestManager
■ Anatomy of an asychronous postback
■ Error handling
■ An UpdatePanel cookbook
■ UpdatePanel caveats and limitations
231

232 CHAPTER 7

Under the hood of the UpdatePanel
Using the UpdatePanel control can be a bit like using a Swiss Army knife. Most of
the time, the primary utilities, such as the knife and scissors, are used to resolve
issues. Other times, using additional functions and features of the tool make more
sense when you’re attempting to solve complex problems. For example, it’s more
feasible to use a screwdriver as opposed to the knife for a task such as tightening a
screw. Knowing that these functions exist—and, just as important, how and when to
use them—will make your use of the tool effective. The same notion is applied to
the UpdatePanel: Understanding how to use its principal functions is only half the
battle. Gaining a deeper knowledge of its capabilities and how it works will empower
you to fully exploit its potential and take more control of your applications.

 In previous chapters (specifically, chapters 4 and 6), you learned how to use
the UpdatePanel control to effectively apply a partial-page rendering pattern to
ASP.NET pages, thus greatly improving the user experience. If you’ve skipped to
this chapter and haven’t had any exposure to the UpdatePanel control, we
encourage you to first read the earlier sections as prerequisites to the upcoming
content. A basic familiarity with the UpdatePanel control will increase your apti-
tude and chances of successfully understanding the topics we’re about to discuss.

 This chapter will take you on a deep dive into the UpdatePanel and the partial-
page rendering mechanism. It will reveal how partial-page updates work behind
the scenes. In addition, it will demonstrate through a series of examples how to
leverage this new-found knowledge to address a variety of scenarios, such as con-
trol development, performance enhancements, and client-side scripting support.

 In the spirit of the Swiss Army knife, we’ll begin our exploration by looking at
a rarely mentioned but highly effective tool in the partial-page rendering mecha-
nism: the PageRequestManager.

7.1 The PageRequestManager: the unsung hero

So far, the UpdatePanel has received much of the credit for partial-page rendering.
With little effort, ASP.NET developers can leverage the control to declare regions of
a page for partial updates. As a result, a normal postback is replaced with an asyn-
chronous one that can update fragments of a page without causing the browser to
refresh. You know that some of this behavior can’t be done with a few server con-
trols; essential to the solution is client-side scripting to at least update the UI. It
should come as no surprise that the UpdatePanel server control looks to another
resource on the client side to manage the updates and requests to the server.

 The PageRequestManager is the client-side counterpart to the UpdatePanel
control. When partial rendering is enabled, this JavaScript object manages the
asynchronous postbacks and updates that take place in the browser. To help you

The PageRequestManager: the unsung hero 233
comprehend how the UpdatePanel works, we’ll shed light on where it all begins:
with the PageRequestManager and its client-side event model.

7.1.1 The client-side event model

The PageRequestManager is a JavaScript object that becomes available when par-
tial rendering is enabled on a page. Its primary responsibilities include managing
the UpdatePanel controls on the page, performing asynchronous postbacks to
the server, and processing the results to dynamically update the contents of the
page. During this process, the PageRequestManager goes through a series of
events, much like the ASP.NET page lifecycle, that presents an opportunity for you
to take more control of what happens during an asynchronous postback.

 Figure 7.1 illustrates the events that occur when an asynchronous postback is
triggered from within an UpdatePanel.

ASP.NET Page

Update
[CurrentTime]

UpdatePanel
initializeRequest

beginRequest

pageLoading

pageLoaded

load

endRequest

Web Server

Figure 7.1 The PageRequestManager fires off a series of events before, during,
and after an asynchronous postback. This allows the page and control developer
to have more influence over how content is rendered during a postback.

234 CHAPTER 7

Under the hood of the UpdatePanel
Perhaps the best way to ease into explaining how you can use these events is to
first outline the order in which they occur. A high-level understanding of the
intentions of each event will give you more insight into the client-side event
model. Once we’ve established this foundation, we can then take a more intrusive
look into how the events work and how to leverage them. What follows is a brief
explanation of each event in the model.

The initializeRequest event
When a trigger such as a button click or column sort on a GridView occurs, the
asynchronous postback process is initiated. In response to this action, the Page-
RequestManager fires a client-side event called initializeRequest. As its name
suggests, the early stages of a request to the server begin to take shape here. Along
with information about which DOM element caused this to occur, the event estab-
lishes an opportunity for you to cancel or give precedence to a particular asyn-
chronous postback.

The beginRequest event
If the asynchronous postback hasn’t been canceled or aborted in the previous
event, the next step in the timeline is the beginRequest event. Raised just before
the asynchronous postback is sent to the server, this occasion is typically used to
relay to the user a visual cue that an asynchronous process is about to begin.
When a process can end up being lengthy, it’s important to keep the user in tune
with the application by providing instant feedback.

TIP The UpdateProgress control (discussed in chapters 1 and 4) leverages
the beginRequest event to display its contents as a visual cue to the user
during an asynchronous postback. It then uses the endRequest event to
hide the visual cue—signifying an end to the request.

In addition, you can invoke custom scripts in response to the event. After this
occurs, the asynchronous postback is sent to the server.

The pageLoading event
After the postback is processed on the server, its response is sent back down to the
client, and the pageLoading event is raised. During this event, the updated HTML
for declared regions of the page is sent down to the client. Additional scripts are
also delivered to assist in managing the state of the UpdatePanel controls and sub-
sequent postbacks. Because this event occurs before any updates are made, it pre-
sents you with an opportunity to inspect the data from the server and apply
customizations, cleanup, or additional handling.

The PageRequestManager: the unsung hero 235
The pageLoaded event
The pageLoaded event signifies the completion of the partial updates to the page.
During an asynchronous postback, this event is fired immediately after the page-
Loading event. However, this event is also fired by the PageRequestManager when
it’s initially loaded on a page. What is important to remember right now is that the
pageLoaded event (as its name states) is fired each time a page is loaded, regard-
less of what caused the page to load (or reload). Later, we’ll demonstrate how to
distinguish between normal and asynchronous requests during this event.

The load event
The next event fired is not a PageRequestManager event, but rather one that
belongs to the Application object (introduced in chapter 2). To recap, the load
event signifies that all scripts have been loaded and that all client-side objects in
the application have been created and initialized. Because this event is significant
to the event lifecycle that exists on the client, the PageRequestManager raises it
during asynchronous postbacks, on behalf of the Application object.

NOTE The PageRequestManager has a function called pageLoaded. When it’s
called, it’s passed in a parameter that indicates whether this is the initial
load for the page. If this is the initial load, the Application object natu-
rally raises the load event during the client-side page lifecycle. If this isn’t
the initial load, a call is made to the raiseLoad function in the Applica-
tion object, which, as its name suggests, raises the load event.

The endRequest event
Finally, if everything goes smoothly, the endRequest event is raised by the Page-
RequestManager after the load event. This event indicates that the processing for
the request has completed. We chose our words carefully when we said “if every-
thing goes smoothly”; this event is also raised when an error is thrown during the
postback processing. If an error occurs, details about the error are passed along
with the event arguments, allowing you to handle the error yourself or let it be
dealt with elsewhere in the page. We’ll spend more time on error handling later
in the chapter. You can rely on the fact that the endRequest event will always be
raised at the end of a partial postback.

 You should now have a high-level understanding of the client-side event model
offered by the PageRequestManager. If the previous overview wasn’t thorough
enough, have no fear—we’ve only just begun to explore how the model behaves.
Soon, we’ll provide more insight into what is happening behind the scenes and
how to program against it effectively.

236 CHAPTER 7

Under the hood of the UpdatePanel
 The next step is to understand how an asynchronous postback works. We’ll
walk through the process of how it originates from the client, how it’s processed,
and how it’s sent back to the browser for partial updates to the UI.

7.1.2 The anatomy of an asynchronous postback

In this section, we’ll walk through an asynchronous postback and uncover how it
works behind the scenes. We’ll examine how the pieces are initially put into place
and how a request is formulated, sent to the server, and eventually parsed and
updated in the UI. In the end, you’ll have a deep appreciation of the partial-page
rendering behavior that the ASP.NET AJAX framework provides.

Laying the foundation
While a page is loaded, a number of things are put into place that lay the ground-
work for partial postbacks. The first significant event that occurs is the OnInit
event for the ScriptManager. The ScriptManager calls the PageRequestManager
server object to determine whether the page is in the process of handling an asyn-
chronous postback. It then exposes this value through the read-only property
IsInAsyncPostBack.

At times, accessing this property can be helpful during the ASP.NET page lifecycle.
For instance, you may wish to apply different or additional logic that depends on
the type of postback. Listing 7.1 shows a simple example of how to access this use-
ful information.

Did you say the PageRequestManager server object?
System.Web.Extensions.dll includes an internal sealed class called PageRe-
questManager. Guess which class the ScriptManager relies on to do most of its
work? The internal modifier signifies that the class is made visible only in the
current package: to other classes in the library, but not to you. A sealed class
can’t be inherited. This pattern is often applied to classes in a library that are
meant to remain hidden or non-extendable. By doing this, the ASP.NET AJAX li-
brary can place the main engine of the partial-page rending mechanism in a sin-
gle class and provide other extendible classes (ScriptManager, UpdatePanel)
that are built on top of the core functionality.

The PageRequestManager: the unsung hero 237
protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 if (ScriptManager1.IsInAsyncPostBack)
 {
 // Perform some extra logic here....
 }
 }
}

After querying the asynchronous postback state, the OnInit event handler for the
PageRequestManager is called. Here, the browser’s capabilities are checked to
determine whether partial rendering is even possible. Following a similar pattern,
the ScriptManager exposes this value through the SupportsPartialRendering
property. If this check passes and the ScriptManager has the EnablePartialRen-
dering property set to true (its default value), then the prerequisites for partial
rendering have been met and the PageRequestManager JavaScript object is made
available in the browser.

 Next up is the Render event of the ScriptManager control. As expected, it calls
the Render method of the PageRequestManager (does this guy have to do every-
thing?). Subsequently, it injects some JavaScript into the page that calls two inter-
nal methods, _initialize and _updateControls, for the JavaScript object. An
example of how this is rendered by the browser appears in listing 7.2. Note that
results vary based on what controls you declare on the page.

Sys.WebForms.PageRequestManager._initialize('ScriptManager1',
 document.getElementById('form1'));

Sys.WebForms.PageRequestManager.getInstance().
 ➥_updateControls(['tUpdatePanel1'
 ,'tUpdatePanel2']
 , ['Update1']
 , []
 , 90);

Listing 7.1 Using the IsInAsyncPostBack property to identify asynchronous
 postbacks

Listing 7.2 Configuring the page for partial updates with _initialize
 and _updateControls

238 CHAPTER 7

Under the hood of the UpdatePanel
TIP We’re almost there! If you’ve read this far into the asynchronous post-
back process, you’ll be relieved to know that you’re close to establishing
the foundation that will enable partial postbacks to occur. To complete
your understanding of this first milestone, you need to traverse a few
more steps: specifically, the recent calls to the PageRequestManager in
the browser.

The first method, _initialize, calls another internal method, _initialize-
Internal, which adds handlers for the following browser events: submit, load,
unload, and click (handlers for these events are responsibly released during the
unload event). It also creates a delegate for the window __doPostback function, so
that normal postbacks raised by server controls and other elements can be inter-
cepted. Registering for these events puts the PageRequestManager into a position
where it can capture normal postbacks and replace them with asynchronous ones
when applicable.

 Last is the call to the PageRequestManager’s internal _updateControls func-
tion. Passed into it is an array of UpdatePanel IDs on the page as well as the IDs of
any controls that have been registered as asynchronous postback controls and
normal postback controls (see chapter 6). The timeout value, in seconds, is the
last parameter passed into the call.

 Internally, this method builds and maintains a number of private arrays for the
UpdatePanel IDs and relevant controls on the page. These arrays are used later
during asynchronous postbacks to determine which element invoked the post-
back as well as how to determine which action to take (a normal postback versus
asynchronous postback).

NOTE The first parameter in the call takes an array of UpdatePanel IDs. Notice
that they’re prefixed with the character t. This relays to the PageRequest-
Manager whether the panel has the ChildrenAsTriggers property (see
chapter 6) enabled. If the property were set to false, the UpdatePanel
ID would be prefixed with f instead.

With the foundation in place, the partial-rendering mechanism is ready to be
invoked. Let’s take the next step by examining what happens when a request is
about to be made to the server.

Before the asynchronous postback
In ASP.NET, when a postback is about to happen, the first thing that is usually
determined is which control invoked the process. Conveniently, the name of the
control that invoked the postback is placed on the page in a hidden field called

The PageRequestManager: the unsung hero 239
__EVENTTARGET. From managed code, one of the many ways you can examine its
value is through the Params collection of the Request object:

string controlName = this.Request.Params.Get("__EVENTTARGET");

This works for most controls, but it isn’t supported for two common controls in the
ASP.NET toolbox: Button and ImageButton. Instead of calling the __doPostBack
JavaScript function that all other controls use, these button controls are rendered
by the browser with simple input type='submit' tags. All these buttons do is cause
the form to submit it to itself. When one of these buttons is clicked, you determine
the control that invoked the postback by walking through the controls collection on
the page and looking for the first and only button control. What about the other
controls? Fortunately, this is the only input-type control added to the collection, so
all you have to do is find the first (and only) button control in the collection.

 Fortunately for you, the ID of the control that invoked the property is also
exposed by the ScriptManager with the AsyncPostBackSourceElementID prop-
erty. In addition, it’s captured by the PageRequestManager in the browser (more
on this soon).

 What remains, is formatting the request to the server and sending it across the
wire asynchronously. When one of the button controls is clicked, this process begins
with an internal handler called _onFormElementClick. The _onFormElementClick
handler is also the only way to track whether a submit button has been clicked,
because the other controls invoke the __doPostBack function.

 Here, it’s determined whether the request should be sent asynchronously or as
a normal postback. Alternatively, if the request originated from another control,
other than the Button or ImageButton control, then the JavaScript __doPostBack
function is called and intercepted by the PageRequestManager. Both approaches
lead you to the _onFormSubmit function, where the following tasks are performed:

1 A sanity check is made to confirm that the submit event happened in an
UpdatePanel or a registered asynchronous postback control.

2 The form body is formatted for the request to the server by iterating
through the elements on the page.

3 A new Sys.Net.WebRequest object (introduced in chapter 5) is instantiated
for the asynchronous request.

4 The initializeRequest event is raised, and its arguments are checked to
catch any actions from the client to cancel the request.

5 Any previous postbacks are aborted—only one can happen at a time.

240 CHAPTER 7

Under the hood of the UpdatePanel
6 The beginRequest event is raised.

7 The Sys.Net.WebRequest object is populated with additional headers to indi-
cate an asynchronous request.

8 The request is sent to the server with the _onFormSubmitCompleted func-
tion registered as the callback method to invoke when complete.

As you continue to put together blocks of knowledge about how asynchronous
postbacks work, you’ll eventually have all the pieces to complete your understand-
ing of a partial postback. You’re more than halfway: All that remains is learning
how the postback is processed and how the updates are applied.

During the asynchronous postback
When the request reaches the server, a new Page instance is created, and all the
stages of the page lifecycle take place. These include events raised for other web
controls on the page and routine events that occur during a typical postback. The
server determines that the request is asynchronous by examining the headers in
the request and finding the X-MicrosoftAjax field we mentioned earlier. Using a
tool called Web Developer Helper, an IE browser plug-in developed by a member of
the ASP.NET team, you can easily view the fields in the request made to the server.
Figure 7.2 shows a screen shot of a captured request. This tool and others are dis-
cussed in appendix B.

 As you can see by examining the Request Headers tab in the dialog, the X-
MicrosoftAjax field is passed into the request along with the Cache-Control
field we mentioned earlier.

 Figure 7.2 also gives you insight into the response coming from the server.
Typically, a response from the server during a normal postback includes the

Determining an asynchronous postback
When the request is being formatted on the client, it adds a new X-Microsoft-
Ajax header and sets its value to Delta=true to relay to the server that you
don’t want a typical response, but a delta response instead. You want to be re-
turned only changes relevant to the regions you specified with the UpdatePanels,
instead of changes for the whole page.

Another header called Cache-Control is initialized to no-cache to prevent
caches from interfering with the request as well as preventing server-side page
output cache. For more about the Cache-Control field, refer to the HTTP proto-
col at http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

The PageRequestManager: the unsung hero 241
HTML for the entire page to render in the browser. Also, the Content-Type is set
to text/html. For partial postbacks, this type is set to text/plain; and instead
of the entire HTML being sent from the browser, the payload instead includes
the following:

■ Only the HTML rendered for regions of the UpdatePanel controls on the page
■ The updated ViewState for the page
■ A set of script blocks, hidden fields, and data items for managing and apply-

ing updates to the page

Figure 7.3 gives you a glimpse into the payload sent from the server in response to
an asynchronous request.

Figure 7.2 A capture of an asynchronous HTTP request confirms that the X-MicrosoftAjax fields is
being added to the request.

242 CHAPTER 7

Under the hood of the UpdatePanel
If you take a close look at the Response Content tab displayed in the bottom panel
of figure 7.3, you’ll see some strangely formatted content that is part HTML and
part plain text. Prefixed with an integer that signifies the size of the payload, the
character | is used as a delimiter for certain keys in the text (a format only a mother
could love). It’s important to note that this text shouldn’t be tampered with and is
parsed by the PageRequestManager to apply the updates to the page. Considering
the warning, it doesn’t mean you can’t evaluate the content and add additional
logic to your script based on the data. This brings you to the last and final step of
the process: evaluating the data from the server and updating the interface.

Figure 7.3 The response from the server during an asynchronous postback includes uniquely formatted
text that is parsed by the PageRequestManager in the browser to apply the partial-page updates.

A client-side event viewer 243
After the asynchronous postback
Going back to when the request was made, you included a callback function
called _onFormSubmitCompleted. This method is now invoked in the browser to
signify that the server has completed its portion of the processing. If any errors
occurred, they’re also caught here in the browser and the endRequest event is
raised prematurely in the client-side event model. Included in the endRequest
event arguments is information about the error. If there are no errors, the page-
Loading event is raised, and the PageRequestManager begins to parse the data
from the response and apply the updates to the DOM. Additional scripts are also
loaded at this time, and the scroll position, which was recorded before the request
was sent, is restored at the end. Once complete, the pageLoaded, load, and
endRequest events are raised in their respective order. At last, the partial-page
rendering pattern comes to an end.

 It’s time to put this valuable knowledge to work and get back to coding. The
best way to come full circle with all the information we’ve introduced is to apply it.

7.2 A client-side event viewer

Often, when .NET developers are learning about the page lifecycle, they throw
together an application that displays the raised events on a page. This widespread
technique helps them understand the order in which the events occur, the argu-
ments that are passed along, and ultimately what can and can’t be accomplished
during each event. To reinforce your understanding of the client-side event
model, you’ll build a similar application that will let you observe what happens
during partial-page updates. Figure 7.4 shows the application you’ll build in this
section: a client-side event viewer that hooks into the events of the PageRequest-
Manager and Application objects.

 Serving as a platform for comprehending the client-side events, this learning
tool also lets you experiment with different scenarios that often occur during
development. The application has a little style applied to it as well (this is all about
the user experience, isn’t it?). Rather than take up space displaying the stylesheet,
we’ll leave that up to you to download from the book’s website if you want to pro-
duce the same look.

244 CHAPTER 7

Under the hood of the UpdatePanel
7.2.1 Getting started

The first step is to create a new Ajax-enabled site. Using the Visual Studio tem-
plate provided by the installation package (see chapter 1 for more details), create
the site and add the markup shown in listing 7.3.

<form id="form1" runat="server">

 <asp:ScriptManager ID="ScriptManager1" runat="Server" />
 <div>
 <table>
 <caption>Client-Side Event Viewer</caption>

 <thead>
 <tr>
 <th scope="col">Event</th>
 <th scope="col">Details</th>
 </tr>
 </thead>

Listing 7.3 The general layout for the client-side event viewer

Figure 7.4 A client-side event viewer application will let you observe how the PageRequestManager
and partial-page rendering mechanism works.

Enable partial rendering B

Client-side
eventsC

A client-side event viewer 245

 <tfoot>
 <tr>
 <td align="left" colspan="2">
 Clear
 <asp:Image ID="Clear" runat="server"
 ImageUrl="~/images/trashcan.gif"
 ImageAlign="AbsBottom" AlternateText=""/>

 </td>
 </tr>
 </tfoot>

 <tbody id="clientEvents">
 </tbody>

 </table>
 </div>

</form>

<script type="text/javascript">

 function clearEvents(){
 var events = $get('clientEvents');
 while (events.firstChild) {
 events.removeChild(events.firstChild);
 }
 }

</script>

Examining the code, the first thing to notice is the required B ScriptManager
control at the top. With its presence and the EnablePartialRendering property
set to true (the default value), the page becomes Ajax-enabled and the PageRe-
questManager object is available. Next is the basic C table structure you use to
display the client-side events. Information about each event is populated in the E
body of the table and can be cleared from the D footer by clicking the hyperlink
that calls the F clearEvents function. Pretty straightforward so far—you’ve put
together the overall UI layout and can now start working with the events.

7.2.2 Handling client-side events

With the basic structure in place, you can begin by adding the first handlers for a
few of the events raised by the Application object. Listing 7.4 demonstrates how to
add the handlers and the way information about each of them is captured and dis-
played on the page.

FooterD

Body for
displaying events

E

Clear
events

F

246 CHAPTER 7

Under the hood of the UpdatePanel
<script type="text/JavaScript" language="javascript">
<!--
 // Application events
 Sys.Application.add_init(onInit);
 Sys.Application.add_load(onLoad);

 function onInit(sender, args){
 var row = createEventRow("init", "");
 $get('clientEvents').appendChild(row);
 }

 function onLoad(sender, args){
 var details;
 if (!args.get_isPartialLoad()){
 details = "Normal postback";
 }
 else{
 details = "Asynchronous postback";
 }

 var row = createEventRow("load", details);
 $get('clientEvents').appendChild(row);
 }

 function createEventRow(eventName, details){
 var row = document.createElement("tr");
 var eventCell = document.createElement("td");
 var eventText = document.createTextNode(eventName);
 eventCell.setAttribute("width", "140px");
 eventCell.appendChild(eventText);
 row.appendChild(eventCell);

 var detailsCell = document.createElement("td");
 var detailsText = document.createTextNode(details);
 detailsCell.appendChild(detailsText);
 row.appendChild(detailsCell);

 return row;
 }

//-->
</script>

The events that you’re interested in from the Application object are B init and
load. The handler for the init event named C onInit updates the event viewer
by adding a row to the table body. This is done by calling the local function E

Listing 7.4 Raising the init and load events with the Application object

Add event
handlers

B

Show init
event

C

Show load
event

D

Add row
to tableE

A client-side event viewer 247
createEventRow. This generic routine adds another row to the body of the table
to display information about an event. You’ll use this function throughout the sec-
tion to add information about each event. For the init event, you pass in the
name of the event and leave the second parameter, used to display additional
details, as an empty string.

 Next is the load event raised by the Application object and its corresponding D
onLoad handler. Here, you check to see if you’re currently processing a normal post-
back or an asynchronous one by examining one of the properties passed in to the
event arguments: isPartialLoad. Listing 7.5 reiterates how this is done to format
more information about the event.

var details;
if (!args.get_isPartialLoad()){
 details = "Normal postback";
}
else{
 details = "Asynchronous postback";
}
var row = createEventRow("load", details);

The additional information is passed in to the second parameter of the cre-
ateEventRow function. If you run the application now, you’ll see that both events
are populated in the event viewer, which shows that you’re off to a good start and
ready to handle more events.

 Let’s continue by addressing the events raised by the PageRequestManager.
Listing 7.6 shows how to add handlers for each of those events as well as some sim-
ple code to update the event viewer.

with(Sys.WebForms.PageRequestManager.getInstance()) {
 add_initializeRequest(onInitializeRequest);
 add_beginRequest(onBeginRequest);
 add_pageLoading(onPageLoading);
 add_pageLoaded(onPageLoaded);
 add_endRequest(onEndRequest);
 }

function onInitializeRequest(sender, args){
 var row = createEventRow("initializeRequest", "");
 $get('clientEvents').appendChild(row);
}

Listing 7.5 Querying the event arguments to determine whether the postback
 is asynchronous

Listing 7.6 Adding event handlers for events raised by the PageRequestManager

Update event
viewer

Add handlers for
PageRequestManager
events

248 CHAPTER 7

Under the hood of the UpdatePanel
function onBeginRequest(sender, args){
 var row = createEventRow("beginRequest", "");
 $get('clientEvents').appendChild(row);
}

function onPageLoading(sender, args){
 var row = createEventRow("pageLoading", "");
 $get('clientEvents').appendChild(row);
}

function onPageLoaded(sender, args){
 var row = createEventRow("pageLoaded", "");
 $get('clientEvents').appendChild(row);
}

function onEndRequest(sender, args){
 var row = createEventRow("endRequest", "");
 $get('clientEvents').appendChild(row);
}

NOTE There can be only one PageRequestManager on a page. In order to work
with the object, you must retrieve an instance of it. You do so by calling
the object’s static getInstance method. To cut back on some typing, we
used the JavaScript with statement to leverage the same instance for all
the commands that add the handlers.

The handlers are in place; now you need events to initiate a partial-page update.
To keep things simple, add an UpdatePanel to the page and assign it some child
controls that invoke a postback when you interact with them (see listing 7.7).

<asp:Panel ID="Panel1" runat="server" GroupingText="UpdatePanel1">
 <asp:UpdatePanel ID="UpdatePanel1" runat="server"
 UpdateMode="Conditional">
 <ContentTemplate>
 Last Updated: <asp:Label ID="LastUpdated1" runat="server" />
 <div>
 <asp:Button ID="Update1" runat="server" Text="Update"
 OnClick="Update_Click" />
 </div>
 </ContentTemplate>
 </asp:UpdatePanel>
</asp:Panel>

Listing 7.7 Adding an UpdatePanel control and child controls to invoke asynchronous
 postbacks

A client-side event viewer 249
You add a Label control and a Button control as the child controls for the
UpdatePanel. When the button is clicked, the text in the label is updated with the
current time (a pattern used throughout the book). When the time changes, this
serves as the indication that a partial update has been applied:

protected void Update_Click(object sender, EventArgs e)
{
 LastUpdated1.Text = DateTime.Now.ToLongTimeString();
}

Because the button is declaratively placed in the ContentTemplate tag of the
UpdatePanel, it performs a partial postback when you interact with it. This time,
when you run the application and click the Update button, the events raised by
the PageRequestManager and Application object are displayed in the event viewer
application. Figure 7.5 proudly displays your progress. Notice how the distinction
between the types of postbacks is made during the load event.

 Let’s evaluate where you are right now before going any further. You have an
application that registers a handler for each of the events raised during a partial
postback. We’ve started exploring some of the arguments passed in by initially
adding more logic in the load event handler.

 It makes sense to continue our investigation with the first event raised by the
PageRequestManager: the initializeRequest event. This important occasion is
when you can abort a request or determine which request has precedence over
another. Let’s continue to build out the application, resuming with how to abort
a request.

Figure 7.5 Your progress thus far: capturing each event raised during an asynchronous postback

250 CHAPTER 7

Under the hood of the UpdatePanel
7.2.3 Aborting a postback

The initializeRequest event is raised to signify the early stages of an asynchro-
nous request. The arguments passed along with the event are of the type Ini-
tializeRequestEventArgs. Here, you can retrieve the ID of the element that
invoked the request by examining its postBackElement member. In addition,
based on the ID, you may decide to abort a request by calling the PageRequest-
Manager’s abortPostBack method.

 To see this in action, let’s add another button to the UpdatePanel that will give
you the opportunity to abort a request. In addition, you’ll delay the logic on the
server to increase the window of opportunity for aborting when the Update but-
ton is clicked. Both changes to the declarative markup and the code-behind are
shown in listing 7.8.

protected void Update_Click(object sender, EventArgs e)
{
 LastUpdated1.Text = DateTime.Now.ToLongTimeString();
 System.Threading.Thread.Sleep(5000);
}

function onInitializeRequest(sender, args){
 var details = "postBackElementID = " +
 args.get_postBackElement().id;

 if (args.get_postBackElement().id == "Abort")
 Sys.WebForms.PageRequestManager.getInstance().abortPostBack();

 var row = createEventRow("initializeRequest", details);
 $get('clientEvents').appendChild(row);
}

First, you put a B Sleep call into the code-behind to slow down the update, essen-
tially giving you a 5-second window (5,000 milliseconds) of opportunity to test the
abort logic. Remember, calling Sleep is only for demonstration purposes and
should never be implemented in production code. Next, you compare the ID of
the element that initiated the postback with that of the Abort button on the page;
if they match, you call the C abortPostBack function in the PageRequestMan-
ager. The result is a premature end to the request.

NOTE Because the abortPostBack function is like a static method of the
PageRequestManager, you can also call it outside the initializeRe-
quest handler. In some cases, you may wish to have a simple element on
the form that can abort a request at any time.

Listing 7.8 Clicking the Abort button aborts the postback.

Slow down
update

B

Abort
request C

A client-side event viewer 251
The next time you run the application and click the Abort button during the asyn-
chronous postback, you’ll see that the request is aborted and the endRequest
event is fired immediately. We encourage you to walk through this example to
reinforce your understanding of how this works.

7.2.4 Managing postback priority

As we mentioned earlier, in addition to aborting a request, the initializeRe-
quest event is also an opportunity for you to prioritize asynchronous postbacks.
Because the framework handles only one request at a time, the latest one always
gets sent—essentially canceling any previous request by default. At times, you may
wish to take more control of this scenario by examining which element invoked
the request and deciding whether it should take precedence over the current
request. Or, you may wish to cancel all incoming requests until the current post-
back has been completed.

The InitializeRequestEventArgs class has a property called cancel. Setting the
cancel property to true cancels the latest request from being sent to the server. If
an asynchronous request is currently being processed, then it proceeds without any
interruptions. To demonstrate, let’s add to the form another button called FastUp-
date that does the same thing as the Update button, minus the Sleep call. This but-
ton demonstrates how you can assign priority to a specific request. Listing 7.9 shows
the new button added to the page.

<asp:Button ID="Update1" runat="server" Text="Update"
 OnClick="Update_Click" />
<asp:Button ID="Abort" runat="server" Text="Abort" />
<asp:Button ID="FastUpdate" runat="server" Text="Fast Update"
 OnClick="FastUpdate_Click" />

Listing 7.9 Adding a new button to assign precedence to a postback

Abort vs. cancel
When the PageRequestManager’s abortPostBack function is called, all asyn-
chronous requests are stopped and the partial-page postback is terminated. This
is different than setting the cancel property in the InitializeRequestEvent-
Args class. Because the framework handles only one asynchronous request at
a time, it naturally gives precedence to the latest request. If one request is currently
being processed, but another occurs in that time, the initial request is canceled
and priority is given to the latest request. You can control this behavior by examining
which element invoked the request and updating the cancel property accordingly.

252 CHAPTER 7

Under the hood of the UpdatePanel
Now, when a request is made, you check to see if you’re in the middle of an asyn-
chronous postback. If so, then you cancel the latest request to give precedence
(priority) to the previous postback. To accomplish this, make the updates to the
onInitializeRequest handler shown in listing 7.10.

function onInitializeRequest(sender, args){
 var prm = Sys.WebForms.PageRequestManager.getInstance();
 var details = "postBackElementID = "
 + args.get_postBackElement().id;

 if (prm.get_isInAsyncPostBack()){
 if (args.get_postBackElement().id == "Abort")
 prm.abortPostBack();
 else{
 args.set_cancel(true);
 details += " (canceled)";
 }
 }

 var row = createEventRow("initializeRequest", details);
 $get('clientEvents').appendChild(row);
}

We may be lazy, but we pride ourselves on being proactively lazy. This example
makes a copy of an instance of the B PageRequestManager so you can use it later
in the function without all the extra typing. Next, you check to see if you’re cur-
rently in an asynchronous postback by getting the C isInAsyncPostBack prop-
erty from the PageRequestManager. This makes sense because you want to abort
and cancel a request only if you’re currently in the middle of one. Finally, if the
Abort button wasn’t the element that invoked the request, you set the D cancel
property to true to give priority to the previous request.

7.2.5 Notifying the user

Just before an asynchronous request is sent to the server, the PageRequestManager
raises the beginRequest event. Similar to the previous example, the BeginRequest-
EventArgs passed into this handler includes the postBackElement property. When
raised, this occurrence gives you the opportunity to notify the user about the
upcoming postback before it begins. For lengthy operations, what typically happens
(and is recommended) is that the user is given a visual prompt signifying that work
is in progress. The prompt is removed when the process is completed. Listing 7.11
demonstrates how you add this behavior to the existing application.

Listing 7.10 Aborting and canceling requests during partial updates

Save instance of
PageRequestManager B

Check if in
asychronous
postbackC

Cancel
latest request

D

A client-side event viewer 253
<div id="loadingPanel" class="asyncPostBackPanel"
 style="display: none;">
 Loading ...
</div>
...
function onBeginRequest(sender, args){
 $get('loadingPanel').style.display = 'block';
 var row = createEventRow("beginRequest", "");
 $get('clientEvents').appendChild(row);
}

function onEndRequest(sender, args){
 $get('loadingPanel').style.display = 'none';
 var row = createEventRow("endRequest", "");
 $get('clientEvents').appendChild(row);
}

During the postback, the visual prompt you’d like to display to the user is
declared in a div element called B loadingPanel. When the onBeginRequest
function is invoked, the element is displayed by C changing its style. To complete
the process, when the onEndRequest function is called, you hide the element by
setting the D style back to its original state. The next step is the server-side pro-
cessing of the request.

7.2.6 Locked and loaded

Where are you in the process? Let’s quickly recap. You’ve invoked the request and
passed the stage where it could have been aborted or canceled gracefully. In addi-
tion, you’re displaying to the user an indication that an update or request is being
processed—there is no turning back now!

 In between the beginRequest and endRequest events raised by the PageRe-
questManager are two additional events that notify you about the progress of the
postback on the server. The first event, pageLoading, occurs when the most recent
postback has been received but before any updates to the interface are applied.
Passed in to the arguments is information about which UpdatePanel controls will
be updated and deleted.

 The second event, pageLoaded, is raised after the contents on the page have
been rendered. This event also tells you which panels were created and updated.
Listing 7.12 shows how you add this information to the event viewer application.

Listing 7.11 Show and hide a visual prompt to the user during asychronous operations.

Visual promptB

Show
prompt

C

Hide
prompt

D

254 CHAPTER 7

Under the hood of the UpdatePanel
function onPageLoading(sender, args){
 var details = new Sys.StringBuilder();
 details.append(displayPanels("Updating",
 args.get_panelsUpdating()));
 details.append(" - ");
 details.append(displayPanels("Deleting",
 args.get_panelsDeleting()));
 var row = createEventRow("pageLoading", details.toString());
 $get('clientEvents').appendChild(row);
}

function onPageLoaded(sender, args){
 var details = new Sys.StringBuilder();
 details.append(displayPanels("Created",
 args.get_panelsCreated()));
 details.append(" - ");
 details.append(displayPanels("Updated",
 args.get_panelsUpdated()));
 var row = createEventRow("pageLoaded", details.toString());
 $get('clientEvents').appendChild(row);
}

function displayPanels(action, panels){
 var sb = new Sys.StringBuilder();
 sb.append(action + " " + panels.length + " panel");
 if (panels.length >= 0)
 sb.append("s");

 if (panels.length > 0){
 sb.append(" = ");
 for (var i = 0; i < panels.length; i++){
 if (i > 0)
 sb.append(", ");

 sb.append(panels[i].id);
 }
 }
 return sb.toString();
}

In the onPageLoading function, you retrieve the panels that are B updating and C
deleting from the PageLoadingEventArgs object. To display information about
each of them, you call a local utility function called F displayPanels, which for-
mats the details for the event viewer.

Listing 7.12 Determine which panels are being rendered as a result of a partial
 postback.

Panels
updating

B

Panels
deleting

C

Panels
created

D

Panels
updated

E

Format
details

F

A client-side event viewer 255
 You follow a similar pattern in the onPageLoaded function by accessing the
panels that are D created and E updated from the PageLoadedEventArgs object.
The displayPanels function is leveraged again to update the viewer. After these
occurrences, the endRequest event is raised by the PageRequestManager, thus
completing a successful partial-page update.

 But what if something doesn’t go smoothly? What happens when an error
occurs on the server during the postback processing? This question leads us to the
last feature in the event viewer project: error handling.

7.2.7 Client-side error handling

Regardless of whether an error occurs during an asynchronous postback, the
PageRequestManager always raises the endRequest event. Passed into the handler
for this occasion is an instance of the EndRequestEventArgs object. If an error
occurs, it can be retrieved with the error property. If you decide to handle the error,
you can update the errorHandled member to prevent it from being thrown on the
page, resulting in an unfriendly dialog box. To validate these statements, let’s add
a button to the page that throws an error when it’s clicked; see listing 7.13.

<asp:Button ID="ThrowError" runat="server" Text="Throw Error"
 OnClick="ThrowError_Click" />
...
protected void ThrowError_Click(object sender, EventArgs e)
{
 throw new InvalidOperationException("Nice throw!");
}

Now, let’s capture the error and handle it in the event handler so it doesn’t
display that unfriendly dialog box we mentioned earlier. Listing 7.14 illustrates
the updated handler for the endRequest event.

function onEndRequest(sender, args){
 var details = "";
 var error = args.get_error();
 if (error != null){
 details = "Error: " + error.message;
 args.set_errorHandled(true);
 }
 else
 details = "No errors";

Listing 7.13 Throw an unfortunate, but polite, error.

Listing 7.14 Handling an error from the client

Error
check

B

Handle
error

C

256 CHAPTER 7

Under the hood of the UpdatePanel

 $get('loadingPanel').style.display = 'none';
 var row = createEventRow("endRequest", details);
 $get('clientEvents').appendChild(row);
}

The B error property is retrieved from the arguments in the handler. If an error
occurs, you update the client-side event details accordingly and set the C
errorHandled property to true.

 This completes the event viewer application! You implemented a simple (but
sharp looking) application that displays the client-side events that occur during a
partial-page update. In the process, you picked up valuable knowledge about each
of the events and how to exert more control over the application. Let’s take this pow-
erful knowledge a step further and begin to investigate more complex scenarios.

7.3 UpdatePanel cookbook

The beginning of this section marks an important milestone in the chapter. At
this point, you should have a firm grasp of how the partial-page rendering mecha-
nism works. You should have also picked up the tools necessary to take more con-
trol of the application during asynchronous postbacks. With this knowledge at
your disposal, we can now tackle more intricate and challenging problems.

 When we put together the content for this portion of the chapter, we decided
to do something a bit different. First, we monitored the ASP.NET forums (see
http://forums.asp.net/default.aspx?GroupID=34) for difficult problems develop-
ers were running into. We then put together a set of solutions to those problems
that we could present here, after a strong foundation was established, to demon-
strate both limitations and creative techniques. Sometimes, when technical books
present this type of format, they call it a cookbook—hence the title for the section.
What follows are the recipes for success.

7.3.1 Why is the UpdatePanel slow?

Sometimes, when the UpdatePanel contains many controls, a significant drop in
performance occurs. As partial postbacks are invoked, the controls in the
UpdatePanel begin to take a long time to render. This is most commonly
observed when a GridView is used, particularly when many rows are displayed on
the control.

UpdatePanel cookbook 257
Figure 7.6 shows the steps that occur after the server-processing portion of an
asynchronous postback is complete.

 Just before the old markup is replaced with the updated HTML, all the DOM
elements in the panel are examined for Microsoft Ajax behaviors or controls
attached to them. To avoid memory leaks, the components associated with DOM
elements are disposed, and then destroyed when the HTML is replaced. As the
number of elements in the page region increases, this phase of the partial-page
update can take a while.

Solution
The following solution works only if the elements in the UpdatePanel aren’t asso-
ciated with any Microsoft Ajax components or behaviors, including extenders. By
disassociating the GridView from its parent node, the PageRequestManager
bypasses the time-consuming step of checking for any leaks in the elements. List-
ing 7.15 demonstrates how this can be accomplished with a GridView control.

Update UpdatePanel

Dispose components

Replace HTML

Figure 7.6
After returning from an asynchronous postback, all the
components associated with elements in the UpdatePanel
are disposed.

258 CHAPTER 7

Under the hood of the UpdatePanel
<asp:UpdatePanel ID="UpdatePanel1" runat="server"
 UpdateMode="Conditional">
 <ContentTemplate>
 <asp:GridView ID="GridView1" runat="server" />
 </ContentTemplate>
</asp:UpdatePanel>

<script type="text/javascript">
<!--
 var pageRequestManager =
 Sys.WebForms.PageRequestManager.getInstance();
 pageRequestManager.add_pageLoading(onPageLoading);

 function onPageLoading(sender, e) {
 var gv = $get("GridView1");
 gv.parentNode.removeNode(gv);
 }
//-->
</script>

If you subscribe to the B pageLoading event raised by the PageRequestManager,
then you can get a reference to the GridView’s container element and C remove
it. As a result, the PageRequestManager won’t iterate through the elements in the
GridView, and the new HTML will replace the old.

TIP If you have multiple controls in an UpdatePanel that are also not associ-
ated with any behaviors or components, try placing them in a common
container element, such as a div. Then, you can remove the parent node
of the common container element instead of removing the container for
each of the controls.

We hope that enhancement will come in handy one day. Next, let’s talk about how
to handle dynamic scripts.

7.3.2 Inject JavaScript during a partial postback

If you’ve ever inserted dynamic JavaScript into a page, then you’re most likely
familiar with the ClientScriptManager class. Accessible through the Client-
Script property of the Page instance, this class exposes a number of useful meth-
ods. Among these methods are techniques for inserting JavaScript code and code
blocks into a page:

Listing 7.15 Removing the parent node to speed up the rending process

Handler for
pageLoading
event

B

Bypass check
for leaks

C

UpdatePanel cookbook 259
■ RegisterClientScriptBlock—Injects JavaScript code anywhere on the
page, depending on when the method is called

■ RegisterStartupScript—Injects JavaScript at the end of the page, ensur-
ing that the script is parsed and loaded after the page has been rendered by
the browser

■ RegisterClientScriptInclude—Injects a script tag with an src attribute
that specifies the location of a JavaScript file to load

■ RegisterClientScriptResource—Similar to the previous call, except the
src attribute specifies the location of a JavaScript file embedded in an
assembly as a web resource

If you’ve called any of these methods during an asynchronous postback, you may
have noticed that they no longer work reliably, and in most cases don’t work at
all. When an asynchronous postback occurs, the PageRequestManager antici-
pates that the data coming from the server is formatted in a special way. Earlier,
in section 7.1.2, we mentioned this awkward format by examining what gets
returned from the server as a response to an asynchronous request. Along with
the new HTML for the page, the incoming payload includes the updated View-
State of the page and other helpful information. Because these methods were
around long before ASP.NET AJAX came into the picture, it makes sense that
they no longer work in this context—they don’t comply with the new format.
What is the solution?

 When you’re working with UpdatePanel controls and partial postbacks, you
must use a set of APIs provided by the ScriptManager that supplements the previ-
ously mentioned methods. Luckily, the methods are basically the same to the
caller—taking in an additional parameter that defines what invoked the script
(the Page or a Control). These methods are aware of the format the PageRequest-
Manager expects and configure the injected script accordingly so the incoming
data from the server can be interpreted in the browser.

Web controls in the UpdatePanel
If you’ve wrapped a web control in an UpdatePanel and would like to inject script
into the page, you must use the methods provided by the ScriptManager to make
it compatible. In addition, if you’re using third-party controls that no longer work
in an UpdatePanel, the reason is most likely that they call the traditional methods
for injecting script into the page. For a resolution, download and install the latest
patches or updates from the vendor to add support for ASP.NET AJAX.

260 CHAPTER 7

Under the hood of the UpdatePanel
Listing 7.16 demonstrates how to use one of the new APIs provided by the Script-
Manager to inject JavaScript at the end of the page.

string msg = string.Format("alert(\"{0}\");",
 "You've done this before, haven't you?");

ScriptManager.RegisterStartupScript(TestButton, typeof(Button),
 "clickTest",
 msg, true);

In this example, you format the message—a simple alert call—and then call the
ScriptManager’s static RegisterStartupScript method to dynamically place
script at the end of the page. The only difference in the method call is the first
parameter, which you use to pass in the instance of the Button control that
invoked the insert.

 Because we’re on the topic of things that you must change in existing and pre-
vious code, let’s look at those useful validator controls we’ve been so faithful to
over the years.

7.3.3 Getting the validators to work

Just like the registered scripts in the previous section, you may also have noticed dur-
ing your ASP.NET AJAX development that the ASP.NET 2.0 validator controls aren’t
compatible with the UpdatePanel. As a temporary fix, the ASP.NET team has re-
leased the source code for a set of compatible validator controls.

NOTE At the time of this writing, the controls are available as a download that
you must apply. Future plans are to deploy the new validator controls
through the Windows Update mechanism. If you’ve already installed this
update, you can skip this section.

To replace the old controls with the new and improved ones, you must compile
the source code and then reference the assemblies for your website (we also pro-
vide the assemblies in the source code for this chapter, on the book’s website).
You can do this by using the Add Reference dialog in Visual Studio. When you’re
developing a website (in contrast to a web application project) you can also copy
the binaries into the bin folder and then refresh the folder.

 After you add the references to the new controls, you have to make a few mod-
ifications to the site’s web.config file to complete the transition. What’s left is to use

Listing 7.16 Registering script with the ScriptManager ensures that it’s
 UpdatePanel-compatible.

UpdatePanel cookbook 261
a technique called tag mapping to re-map the old controls to the new ones in an ele-
gant fashion. This method allows you to preserve all the declarative code you’ve
implemented with the existing validator controls. The other advantage of this
approach is that when the new validator controls are eventually deployed from Win-
dows Update, the only changes you’ll have to make are removing the compiled bina-
ries (DLL files) from the bin folder and the tag-mapping setting in web.config.

 Listing 7.17 shows how to apply the tag mapping to the web.config file.

<tagMapping>
 <add tagType="System.Web.UI.WebControls.CompareValidator"
 mappedTagType="Sample.Web.UI.Compatibility.CompareValidator,
 Validators,
 Version=1.0.0.0"/>
 <add tagType="System.Web.UI.WebControls.CustomValidator"
 mappedTagType="Sample.Web.UI.Compatibility.CustomValidator,
 Validators,
 Version=1.0.0.0"/>
 <add tagType="System.Web.UI.WebControls.RangeValidator"
 mappedTagType="Sample.Web.UI.Compatibility.RangeValidator,
 Validators,
 Version=1.0.0.0"/>
 <add tagType="System.Web.UI.WebControls.RegularExpressionValidator"
 ➥mappedTagType="Sample.Web.UI.Compatibility.
 ➥RegularExpressionValidator,
 Validators, Version=1.0.0.0"/>
 <add tagType="System.Web.UI.WebControls.RequiredFieldValidator"
 ➥mappedTagType="Sample.Web.UI.Compatibility.
 ➥RequiredFieldValidator,
 Validators, Version=1.0.0.0"/>
 <add tagType="System.Web.UI.WebControls.ValidationSummary"
 mappedTagType="Sample.Web.UI.Compatibility.ValidationSummary,
 Validators, Version=1.0.0.0"/>
</tagMapping>

Keeping up the pace of resolving complex issues, the next challenge is one you
may have come across recently in your ASP.NET AJAX development. If not, you’ll
most likely be faced with it someday soon.

7.3.4 Sys.WebForms.PageRequestManagerParseErrorException

While working with the UpdatePanel control, you’ll probably run into this long
but descriptive exception. Although this message may sound more like a medical

Listing 7.17 Exchange existing validators with the new set while preserving the tag.

262 CHAPTER 7

Under the hood of the UpdatePanel
procedure than something you’d expect from the PageRequestManager, its
expressive name is informative.

 In earlier sections, we touched on the special format the PageRequestManager
expects from a server response. A previous example showed you how to replace
some of the register script calls from the ClientScriptManager class with the new
and improved methods offered by the ScriptManager. This solution eliminated a
lot of the headaches for working with dynamic scripts on the page. However, there
are a few more cases where parsing errors are still prevalent. What follows is a list
of the most common causes that throw this exception, as well as their respective
solutions. Each of these scenarios involves the UpdatePanel control:

■ Calling Response.Write—Normally, you use this as a debugging tool. If
you’re working locally, you may want to consider using the Sys.Debug class
in the Microsoft Ajax Library or writing to a Label control on the form.
Because Response.Write doesn’t comply with the format that the Page-
RequestManager expects, PageRequestManager fails to parse it.

■ Using Server.Transfer—Because the client expects only fragments of the
page in return, not a new page, it becomes confused and can’t update the
interface when it’s presented with a new set of elements in the DOM. If you
must call Server.Transfer from an UpdatePanel, register the control
(either declaratively or programmatically) that invokes the call as a Post-
BackTrigger (see chapter 6 for more details about triggers) or place it out-
side the UpdatePanel if possible.

■ Server trace is enabled—Tracing uses Response.Write, which brings us back to
the first noted issue. Searching for alternatives to tracing and debugging is
your best approach.

To round off your understanding of the UpdatePanel and partial-page updates,
let’s look at some of the current limitations.

7.4 Caveats and limitations

As much as we love the partial-page rendering mechanism, it has its limitations. In
this section, we’ll point out some of the gotchas that you may come across during
development. Although some limitations have possible workarounds, a client-
centric approach (see chapter 1 for development scenarios) can sometimes allevi-
ate a few of these restraints. Often, it’s best to leverage both models (client- and
server-centric development) to get the best out of each of them and at the same
time let them complement each other.

Summary 263
7.4.1 Asynchronous requests are sequential

Normal postbacks occur sequentially because each postback, in effect, returns a
new page. This model is applied to asynchronous postbacks as well, primarily
because of the complexity involved in maintaining the page state during a post-
back. ViewState, for example, is commonly used to persist the state of items on a
page. Now, imagine that several calls were handled asynchronously—it would
become extremely challenging, and close to impossible, to merge the changes
made to the page between requests. For stability, asynchronous requests from the
browser are handled one at a time.

7.4.2 Unsupported ASP.NET 2.0 controls

In ASP.NET 2.0, a few server controls currently don’t work with the UpdatePanel.
The TreeView, Menu, and FileUpload server controls deliver unexpected results
when they’re registered as triggers for partial-page updates. In the next version of
the .NET framework and Visual Studio (codename Orcas), most issues related to
these controls will be resolved. For now, alternatives are to leverage third-party
vendor controls or to not place them in the UpdatePanel.

7.5 Summary

You learned in this chapter that the partial-page rendering mechanism is more
than a set of special server controls. We exposed a client-side counterpart to the
server controls called the PageRequestManager, which does most of the work to
make all this happen. Most importantly, you gained insight into how the
UpdatePanel works under the hood. With this knowledge, you can now take more
control of your applications and solve complex situations that you couldn’t
before. In addition, we explored limitations and issues of the ASP.NET AJAX frame-
work, to keep you on your toes.

 The next chapter takes you on a journey into how client-side components are
authored with the Microsoft Ajax Library.

ASP.NET AJAX
client components
In this chapter:
■ The client component model
■ Nonvisual components
■ Client behaviors
■ Client controls
264

The client component model 265
A widely used technique for developing applications uses components as building
blocks. Components encapsulate the application’s functionality and can be
reused across different projects. A component is a special object that implements a
well-defined set of interfaces. These interfaces define the base functionality that
every component provides and specify how components interact with one
another. Components that implement the same interfaces can be interchanged
and can change their internal implementation without affecting other compo-
nents that deal with their interfaces.

 We gave a quick overview of client components in chapter 2, where we dis-
cussed the application model. In this chapter, we’ll talk about the client compo-
nent model provided by the Microsoft Ajax Library. This model lets you create
components on the client side using JavaScript. We’ll also explain the techniques
used to create and access client components at runtime. To understand the mate-
rial presented in this chapter, you need to know how to program in JavaScript
using the object-oriented techniques presented in chapter 3.

8.1 The client component model

The Microsoft Ajax Library provides a client component model that closely resem-
bles the one used in the .NET framework. As components on the server side derive
from the System.ComponentModel.Component class, ASP.NET AJAX client compo-
nents derive from the client Sys.Component class. In the MicrosoftAjax.js file, the
Sys.Component class is registered as follows:

Sys.Component.registerClass('Sys.Component', null, Sys.IDisposable,
 Sys.INotifyPropertyChange, Sys.INotifyDisposing);

As we said, one of the main characteristics of components is that they implement
a definite set of interfaces. Knowing which interfaces are implemented by the
Sys.Component class is useful, so you’re aware of the base features that compo-
nents can leverage. It’s also fundamental in order to understand how components
can interact with one another.

 A closer look at the registerClass statement shown in the previous code snip-
pet tells you that the Sys.Component class implements the following interfaces:

■ IDisposable—Defines a dispose method, whose purpose is to free the
resources used by the component. Usually, components can initialize and
dispose the resources they use; this mechanism is also available to client
components created with the Microsoft Ajax Library.

266 CHAPTER 8

ASP.NET AJAX client components
■ INotifyPropertyChange—Allows a component to raise an event when the
value exposed by a property changes. As you’ll see later, and then in
chapter 11, you can take advantage of features like bindings to synchronize
the values of two properties of the same or different components.

■ INotifyDisposing—Makes a component able to raise a dispose event to
notify external objects that it’s releasing its resources. Client components
can raise events; they follow the model illustrated in chapter 3 to expose
and raise multicast events.

The set of interfaces supported by a client component is shown in figure 8.1. The
diagram also shows a group of methods exposed by the Sys.Component class. These
are the methods you’ll most often use when dealing with client components.

 Web developers use JavaScript mainly to program against the browser’s DOM.
For this reason, the client component model offers specialized components that
can be associated with DOM elements in a web page. You can take advantage of the
features provided by the client component model and, at the same time, create
components that provide a UI.

«interface»
Sys.IDisposable

«interface»
Sys.INotifyDisposing

«interface»
Sys.INotifyPropertyChange

+dispose()
+add_disposing ()
+remove_disposing()

+add_propertyChanged()
+remove_propertyChanged()

Sys.Component
+ get_events ()
+ get_id ()
+ set_ id()
+get_isInitialized ()
+ initialize ()
+ dispose()
+ raisePropertyChanged ()

Figure 8.1 Every client component derives from the base Sys.Component class, which implements
a well-defined set of interfaces.

The client component model 267
We make a distinction between visual and nonvisual components. Although both
the categories have access to the same base features, visual components are best
suited when you need to work with the DOM.

NOTE The System.ComponentModel namespace contains the component model
classes used in the .NET framework. To learn more about component
model namespaces, go to http://msdn2.microsoft.com/en-us/library/
ah4293af(VS.71).aspx.

8.1.1 Visual and nonvisual components

Client components are classified as nonvisual or visual. A nonvisual component
doesn’t provide a UI. For example, a Collection component that manages access
to an array of objects is a nonvisual component. Another example of a nonvisual
component is the Application object, stored in the global Sys.Application vari-
able. A visual component provides a UI. In a web page, the UI is defined using
HTML code. For this reason, a client visual component is typically associated with
a portion of markup code. A menu is an example of a visual component: It man-
ages a list of URLs and lets you navigate those URLs through hierarchical panels.
Another example is a slider, which lets you select from a range of values by drag-
ging a graphical handle.

 In the .NET framework, visual components are called controls. On the client
side, you can create either a control or a behavior. We’ll discuss the differences
between controls and behaviors shortly. Figure 8.2 shows the hierarchy of client
components as defined in the client component model.

 The base Sys.Component class is used to create nonvisual components. The
Sys.UI.Behavior and Sys.UI.Control classes, which represent behaviors and

Sys.Component

Sys.UI.ControlSys.UI.Behavior

Figure 8.2 Hierarchy of components in the Microsoft Ajax Library. Nonvisual components provide
generic component functionality and derive from Sys.Component. Visual components can be
associated with DOM elements and can derive from Sys.UI.Behavior or Sys.UI.Control.

http://msdn2.microsoft.com/en-us/library/ah4293af(VS.71).aspx
http://msdn2.microsoft.com/en-us/library/ah4293af(VS.71).aspx

268 CHAPTER 8

ASP.NET AJAX client components
controls, respectively, are used to create visual components and are declared
under the Sys.UI namespace.

8.1.2 Controls and behaviors

The differences between controls and behaviors are mostly semantic. Both are
components associated with DOM elements in the page, and they offer a similar
set of features. Behaviors enhance DOM elements without changing the base func-
tionality they provide. If you associate a behavior with a text box element, the text
field continues to accept the user’s text input. But you can use the behavior to add
client functionality to the text box and, for example, upgrade it to an auto-com-
plete text box.

 The chief purpose of client controls is creating element wrappers. For example,
you can create a TextBox control that wraps an input element of type text. You
can create a Label control that wraps a span element, and so on. This is similar to
what happens with the ASP.NET TextBox and Label server controls. The differ-
ence is that they wrap DOM elements on the server side rather than on the client
side. An element wrapper can be useful to enhance the way you program against a
DOM element. For example, you can use controls as a way to program against
DOM elements using declarative code. We’ll discuss the XML Script declarative
code in chapter 11.

 A fundamental difference between behaviors and controls is that a DOM ele-
ment can have multiple behaviors, but it can be associated with one and only one
control. For this reason, behaviors are best suited to add client capabilities to a
DOM element in an incremental way. On the other hand, a control is supposed to
provide the whole client functionality to its associated element.

 We’ll go deep into controls and behaviors later in this chapter. Now, let’s exam-
ine the general features offered by client components. The following section clar-
ifies the concept of component lifecycle.

8.1.3 Component lifecycle

Components are complex objects capable of encapsulating other objects and
child components.

 For example, a nonvisual component may need to encapsulate child objects
and even instantiate them programmatically. A visual component, being associ-
ated with a DOM element, typically needs to attach and detach event handlers, or
may create dynamic elements. Having a centralized location for initializing and
disposing an instance is critical.

The client component model 269
 The lifecycle of a component consists of two stages: initialize and dispose. The
initialize stage begins when a component is created, and the dispose stage is
reached before a component instance is removed from the memory. To accom-
plish the initialization routine, client components expose a method called ini-
tialize. The dispose method cleans up the current instance before it’s garbage
collected. Soon, you’ll discover that participating in the lifecycle of a client com-
ponent is about overriding the initialize and dispose methods of the Sys.Com-
ponent class.

 Before you start to work with components, you need to understand the rela-
tionship that exists between the lifecycle of a component and the client page life-
cycle. As you’ll see, components interact with the Application object during the
whole page lifecycle. This is possible because the Application object hosts the
components instantiated in the page.

8.1.4 Containers

A container is an object that holds a collection of
child components and provides services to those
components. Typically, a container exposes meth-
ods for adding, removing, and accessing the child
components. The Microsoft Ajax Library defines
the Sys.IContainer interface for implementing
containers. The methods exposed by this interface
are shown in figure 8.3.

 Figure 8.3 shows that the Sys._Application
class, the single instance of which is the Applica-
tion object, is a container. One of the goals of the
Application object is to host and keep track of the
client components instantiated in the page. As
you’ll discover in the following sections, hosting cli-
ent components in a container has various advan-
tages. For example, you can retrieve references to client components through the
container, instead of storing them in global JavaScript variables. Another benefit
of hosting components in the Application object is that they’re automatically dis-
posed by the container when the page is unloaded by the browser. This means you
don’t have to manually call the dispose method on each component instance.
Client components become children of the Application object during their cre-
ation process, which is illustrated in section 8.2.1.

«interface»
Sys.IContainer

Sys._Application

+addComponent()
+removeComponent()
+findComponent ()
+getComponents()

Figure 8.3 Methods defined by
the Sys.IContainer interface.
The Sys._Application class is
an example of a client class that is
a container.

270 CHAPTER 8

ASP.NET AJAX client components
Figure 8.4 shows the interaction between the Application object and one of its
child components. Client components are usually instantiated in the init stage of
the client page lifecycle and initialized before the load stage is entered. This
means that when the load event is raised, client components are already initial-
ized and ready for use. Finally, components are disposed during the unload stage
by the Application object.

NOTE Interaction with client components shouldn’t happen until the load
event of the client page lifecycle is raised. Only when the load event is
raised is everything hooked up and ready.

We discussed the client lifecycle of an ASP.NET AJAX page in chapter 2. Be sure you
understood the material presented there before you proceed. After this overview of
the client component model, you’re ready to start working with client components;
let’s shift from theory to practice by creating your first trivial component.

8.2 Working with client components

The best thing for growing confidence in manipulating client components is cre-
ating a trivial component. All this component does is display a greet message on
the screen and notify you each time a stage in its internal lifecycle is reached. Our
goal is to show you how a component is created and how you can participate in its
lifecycle. Look at the code shown in listing 8.1.

Sys.Application Component

1. init

3. unload

2. load

Initialize

Dispose

Figure 8.4
Client page lifecycle and
component’s internal
lifecycle: client components
are hosted by the Application
object during their creation
and are automatically
disposed when the page is
unloaded by the browser.

Working with client components 271
Type.registerNamespace('Samples');

Samples.TrivialComponent = function() {
 Samples.TrivialComponent.initializeBase(this);
}
Samples.TrivialComponent.prototype = {
 initialize : function() {
 Samples.TrivialComponent.callBaseMethod(this, 'initialize');

 alert("I've been initialized!");
 },

 dispose : function() {
 alert("I’m being disposed!");

 Samples.TrivialComponent.callBaseMethod(this, 'dispose');
 },

 greet : function() {
 alert("Hello, I'm your first component!");
 }
}
Samples.TrivialComponent.registerClass('Samples.TrivialComponent',
 Sys.Component);

Looking at the call to registerClass in the previous listing, you see that the triv-
ial component is a client class that derives from Sys.Component. To participate in
the lifecycle of a component, you need to override the initialize and dispose
methods in the constructor’s prototype object. Method overriding was explained
in chapter 3, when we talked about inheritance in the Microsoft Ajax Library. In
the example, you override both methods to display a message box using the Java-
Script alert function.

NOTE Don’t forget to call the base implementations of the initialize and
dispose methods using the callBaseMethod method, as in listing 8.1.
They perform important processing steps during the initialization and dis-
posing phases of the component’s lifecycle. Calling the base implementa-
tions ensures that a component is properly initialized and disposed.

The trivial component also defines a method called greet. This method displays a
greeting message using the alert function. Its purpose is to demonstrate that you
can declare methods in a component the same way as in a client class created with
the Microsoft Ajax Library.

Listing 8.1 Code for the trivial component

272 CHAPTER 8

ASP.NET AJAX client components
 Let’s see what it takes to create an instance of the trivial component. In chap-
ter 3, you learned that you can create custom JavaScript objects by using a func-
tion—the constructor—in conjunction with the new operator. Unlike with custom
JavaScript objects, using the new operator isn’t enough to properly instantiate a
client component. It’s your responsibility to initialize the new instance and host it
in the Application object. For this purpose, you must rely on a special method
called $create, which is provided by the Microsoft Ajax Library. Listing 8.2 shows
how that is done.

Sys.Application.add_init(pageInit);

function pageInit() {
 $create(Samples.TrivialComponent, {'id':'trivialComponent'});
}

function pageLoad() {
 var trivialComponent = $find('trivialComponent');

 trivialComponent.greet();
}

This listing introduces the methods you’ll most often use when dealing with client
components. These methods create an instance of a client component and access
it when needed.

 $create is an alias or shortcut for the Sys.Component.create method. The
advantage of this method is that it performs all the tasks related to the compo-
nent-creation process. We’ll look under the hood of the creation process in the
next section; but note that $create is called in the init stage of the client page life-
cycle. As you may recall from our discussion of the client component model, the
init stage is the point at which client components are instantiated.

 The other method introduced in listing 8.2 is $find. This method, an alias for
the Sys.Application.findComponent method, accesses a child component of the
Application object. This is possible because Sys.Application becomes the con-
tainer of all the client components instantiated using $create. If you pass the ID
of a component to $find, you get back the corresponding instance. We’ll talk
more about IDs and the $find method in section 8.2.2. In the meantime, look at
figure 8.5 to see the component in action.

Listing 8.2 Code for testing the trivial component

Working with client components 273
Before we discuss in detail how client components are instantiated, let’s review
the aliases you’ll use in the code that follows. Table 8.1 lists them along with the
full method names and the tasks they accomplish.

Now, you need to become familiar with the process of instantiating client compo-
nents. By understanding this procedure, you’ll be able to use every kind of client
components in web pages.

8.2.1 Creating components

At first glance, a component may appear to be a simple class that derives from
Sys.Component. Why do you call $create rather than use the new operator to cre-
ate an instance? The answer is that creating an instance isn’t enough because a
component needs to be initialized and added as a child component of the Appli-
cation object. The following code shows how to create a new instance of the triv-
ial component:

var trivialComponent = new Samples.TrivialComponent();
trivialComponent.set_id('trivialComponent');
trivialComponent.initialize();

Sys.Application.addComponent(trivialComponent);

Table 8.1 Some of the aliases defined by the Microsoft Ajax Library

Shortcut Full method name What it does

$get Sys.UI.DomElement.getElementById Returns a reference to a DOM element

$create Sys.Application.create Creates, configures, and initializes
an instance of an ASP.NET AJAX client
component

$find Sys.Application.findComponent Returns a reference to a component

Figure 8.5
The trivial component
greets you.

274 CHAPTER 8

ASP.NET AJAX client components
Creating a TrivialComponent instance with the new operator is just the first step.
The next (optional) thing to do is configure the instance by setting client proper-
ties. For example, the id property lets you retrieve a reference to the new instance
using the $find method.

 Once the initial configuration is complete, you must do the following:

1 Call the initialize method to let the component perform its internal
setup.

2 Invoke the addComponent method of Sys.Application to add the new
instance as a child component of the Application object.

Now you can safely say that the component is ready for use. The $create
method is a lifesaver because it performs the entire procedure automatically.
You can use $create to instantiate, configure, and initialize any client compo-
nent in a single statement. You can also add event handlers and event refer-
ences to child components.

 $create is a powerful method that accepts various arguments. Figure 8.6
shows an example $create statement and points out the arguments passed to the
method.

 The first argument passed to $create is always the fully qualified name of the
component to instantiate. The client component class must derive from Sys.Com-
ponent; otherwise, a client exception will be thrown.

 The last argument is the associated DOM element, which is mandatory for
visual components (behaviors or controls). A nonvisual component like the trivial
component doesn’t need an associated element; a client error will occur if one
is specified.

 The remaining arguments are objects, passed as objects literals, used to config-
ure the component after instantiation and before initialization. As an alternative

$create(Samples.MyComponent, {}, {}, {}, $get('associatedElementID'));

Dictionary of
events

Dictionary of
properties

Class

Dictionary of
references

Associated element

Figure 8.6 Syntax for the $create method. This method is responsible for creating, configuring,
and initializing a client component instance.

Working with client components 275
to passing empty objects, as in figure 8.5, you can pass null. In the subsequent list-
ings, we’ll pass the empty object {} to evidentiate the type of the parameter. To
explain the remaining arguments, let’s return to the $create statement used in
listing 8.1 to create an instance of the trivial component:

$create(Samples.TrivialComponent, {'id':'trivialComponent'});

In this statement, the second argument passed to $create is an object that assigns
a value to the component’s id property. To assign values to other properties, you
must expand the object by adding a name/value pair. Each pair consists of a
string with the name of the property to set and its value.

 In a similar way, you can attach an event handler to one of the events exposed
by a component. The following code shows you how:

$create(Samples.TrivialComponent, {'id':'trivialComponent'},
 {'disposing':onDisposing});

The third argument passed to $create is an object that maps the name of an
event to its handler. The previous statement assumes that a JavaScript function
called onDisposing is defined somewhere in the page or in a loaded script file.
The name of the event, disposing, refers to the event defined in the Sys.INoti-
fyDisposing interface. Whenever you pass the name of an event to $create, it
calls the add_eventName method on the component instance—where eventName
is the actual name of the event—passing the handler as an argument.

 In figure 8.6, the fourth argument passed to $create is a dictionary of refer-
ences. In this object, the name of a property exposed by the component is
mapped to the ID of another component. At runtime, when the component is
instantiated, the ID is used to retrieve a reference to the corresponding instance.
Consequently, the reference is assigned to the specified property.

 $create has its advantages and weaknesses. Here are some of them:

■ $create offers a concise notation for performing the entire job related to
component instantiation, configuration, and initialization. You avoid the
risk of forgetting a call or making the steps in the wrong order.

■ If you use $create, you pay a little overhead at runtime. A series of checks is
performed to verify that you’re trying to instantiate a component and that
you aren’t trying to set nonexistent or read-only properties. These checks
are helpful in ensuring that a component is correctly instantiated and con-
figured before initialization.

■ $create is the method used by ASP.NET AJAX to wire client components to
server controls. Chapter 9 is dedicated to Ajax-enabled controls.

276 CHAPTER 8

ASP.NET AJAX client components
The $create method works in conjunction with $find to help manage client
components instantiated in a web page. In the following section, we’ll provide
more insight on the $find method.

8.2.2 Accessing components

Once a client component has been correctly instantiated and added to a con-
tainer, you can access it by passing its ID to the $find method. Recall that every
component exposes a property named id, which is defined in the base Sys.Com-
ponent class, as shown in figure 8.1. The ID of a component can be passed to
$find to retrieve a reference to the component itself, as shown in figure 8.7.

$find works only if the component has been assigned an ID and if it’s been added
to a container. If you use $create, the component is automatically added as a
child component of the Application object, and you only need to remember to set
the value of the id property.

 Note that $find can also accept a Sys.IContainer instance as the second
argument. This lets you search for components in other containers while continu-
ing to use the $find alias. If you omit the container, the component is searched
for in Sys.Application by default.

 The trivial example component was an ice-breaker and a pretext to illustrate
the methods you’ll use most when working with instances of client components.
It’s time to go deeper and continue our exploration of the client component
model. In the next section, you’ll see how client components can expose events,
and we’ll introduce the property change notification mechanism.

8.2.3 Events and property change notification

In chapter 3, we explained how to expose and raise events in JavaScript objects,
using a model that closely resembles that used in the .NET framework. Before pro-
ceeding, let’s recap the three steps necessary to expose an event in a client class
created with the Microsoft Ajax Library:

var instance = $find('myComponentID', someContainer);

IContainer instance

Component ID

Figure 8.7 $find lets you access a component created with the $create method by
passing its ID and an instance of a class that implements the Sys.IContainer interface.
If the second argument is omitted, the component is searched for in Sys.Application.

Working with client components 277
1 Create a method that adds a handler for the event.

2 Create a method that removes a handler for the event.

3 Create a method that is responsible for raising the event.

The same process applies to client components that want to expose events. The only
difference is that you don’t need to store an instance of the Sys.EventHandlers-
List class in the constructor, because every component inherits it from the base
Sys.Component class. You also inherit the get_events method that you declared in
listing 3.15 to access the Sys.EventHandlersList instance. Taking these differ-
ences into account, the entire process for exposing and handling events described
in chapter 3 can be applied to client components without additional modifications.

 Components reward you with a special mechanism for tracking changes in the
values exposed by properties defined with the Microsoft Ajax Library. Client com-
ponents expose an event called propertyChanged that can be raised whenever the
value of a property changes. This mechanism is practical because you don’t have
to expose and raise a custom event for each value you want to monitor. Instead,
you rely on the propertyChanged event—defined in the Sys.INotifyProperty-
Change interface—that you can subscribe to, to know which property changes its
value and when.

 But why do you need to monitor property changes? In chapter 11, we’ll intro-
duce bindings, which are objects that leverage the property-change notification
mechanism to keep the values of two properties synchronized. They do this by
updating the value of one property as soon as the other is modified, without your
having to manually write the logic to perform this task. Bindings reveal their
power when used in declarative languages. (We’ll discuss the XML Script declara-
tive language in chapter 11.)

 Using the property-change notification mechanism is straightforward. When-
ever the value exposed by a property changes, all you have to do is call the
raisePropertyChanged method. This method accepts a string with the name of
the property whose value has changed. To detect the change, you usually perform
a check in the setter of the property. As an example, listing 8.3 shows a simple
Customer component that raises the propertyChanged event whenever the value
of the fullName property is modified.

278 CHAPTER 8

ASP.NET AJAX client components
Type.registerNamespace('Samples');

Samples.Customer = function() {
 Samples.Customer.initializeBase(this);

 this._fullName;
}
Samples.Customer.prototype = {
 get_fullName : function() {
 return this._fullName;
 },

 set_fullName : function(value) {
 if(value != this._fullName) {
 this._fullName = value;

 this.raisePropertyChanged('fullName');
 }
 }
}
Samples.Customer.registerClass('Samples.Customer', Sys.Component);

Note that in the set_fullName method—just before you call the raiseProperty-
Changed method—you do a check to ensure that the new value is different from
the one that was stored previously. At this point, an external object can subscribe
to the propertyChanged event and retrieve a string with the name of the property.
This is done through an instance of the Sys.PropertyChangedEventArgs class,
which is passed as an argument to the event handler. The instance has a
get_propertyName method that returns the name of the property whose value has
changed. Listing 8.4 shows how event subscription works by testing the Customer
component in a web page.

<script type="text/javascript">
<!--
 function pageLoad(sender, e) {
 var customer = new Samples.Customer();

 customer.add_propertyChanged(onPropertyChanged);

 customer.set_fullName('John Doe');
 }

Listing 8.3 Property-change notification applied to a property of a client class

Listing 8.4 Subscribing to the propertyChanged event

Raise
propertyChanged
event

Add handler for
propertyChanged

event

Set fullName
property

Behaviors 279
 function onPropertyChanged(sender, e) {
 if(e.get_propertyName() == 'fullName') {
 alert('New value for the fullName property: ' +
 sender.get_fullName());
 }
 }
//-->
</script>

Following the naming convention for client events established by the Microsoft
Ajax Library, you can add an event handler for the propertyChanged event by
passing the handler to the add_propertyChanged method. In the event handler,
you test against the string returned by the get_propertyName method to deter-
mine which property has changed its value.

 With the property-change notification mechanism, we’ve completed our dis-
cussion of the features that can be leveraged by nonvisual client components.
Some topics remain, because you have a whole UI to take care of. The rest of the
chapter is dedicated to the additional features provided by visual components. By
understanding the nuts and bolts of behaviors and controls, you’ll have a com-
plete understanding of the client component model.

8.3 Behaviors

The name behaviors won’t sound new to web developers experienced with program-
ming in Internet Explorer. If you browse the documentation on the Microsoft
Developer Network (MSDN) website, located at http://msdn.microsoft.com, you’ll
find the following definition: “Element behaviors are encapsulated components, so
they can add new and interesting functionality to a Web page while improving the
organization of content, functionality, and style.”

 Although the ASP.NET AJAX implementation is radically different—and cross-
browser—the concept is much the same: You use behaviors to enhance the func-
tionality of DOM elements. In this section, we’ll introduce client behaviors and
explain how to create them. By the end, you’ll apply your new skills to create a behav-
ior that uses CSS and the DOM to add client functionality to a text box element.

NOTE You can find an introduction to DHTML behaviors in Internet Explorer at
http://msdn.microsoft.com/library/default.asp?url=/workshop/author
/behaviors/behaviors_node_entry.asp.

Retrieve
property
name

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/behaviors/behaviors_node_entry.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/behaviors/behaviors_node_entry.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/behaviors/behaviors_node_entry.asp
http://msdn.microsoft.com
http://msdn.microsoft.com

280 CHAPTER 8

ASP.NET AJAX client components
8.3.1 Sys.UI.Behavior

A behavior is a client class that derives from the base Sys.UI.Behavior class. In turn,
Sys.UI.Behavior inherits from Sys.Component, as shown earlier in figure 8.1. As
we stated during the overview of the client component model, behaviors are visual
components because they’re always associated with a DOM element. This ele-
ment—the associated element—is passed to the constructor when you create a new
instance of the behavior.

 Being components, behaviors take advantage of all the features illustrated in
the previous sections. These include the ability to raise events and use $create
and $find to create instances and access them. The creation process is almost the
same as that of nonvisual components. To better understand the few differences,
let’s start by creating the simplest behavior: an empty behavior. Listing 8.5 shows
the code for the EmptyBehavior class.

Type.registerNamespace('Samples');

Samples.EmptyBehavior = function(element) {
 Samples.EmptyBehavior.initializeBase(this, [element]);
}
Samples.EmptyBehavior.prototype = {
 initialize : function() {
 Samples.EmptyBehavior.callBaseMethod(this, 'initialize');
 },

 dispose : function() {
 Samples.EmptyBehavior.callBaseMethod(this, 'dispose');
 }
}
Samples.EmptyBehavior.registerClass('Samples.EmptyBehavior',
 Sys.UI.Behavior);

The previous code acts as a skeleton class for client behaviors. The constructor of a
behavior takes the associated DOM element as an argument. Then, it calls the
initializeBase method to pass the element to the base class’s constructor.
Whenever you need to access the associated element from the class, you can
retrieve it by calling the get_element method.

 In the prototype object of the constructor, you typically override the ini-
tialize and dispose methods to participate in the component lifecycle. As
explained in section 8.2, you must not forget to call the implementations of the

Listing 8.5 The simplest behavior is an empty behavior.

Behaviors 281
base class, as you do in listing 8.5. Finally, the call to registerClass in the last
statement turns the constructor into an ASP.NET AJAX client class that derives
from Sys.UI.Behavior.

 We need to talk about how to create and access instances of client behaviors.
As you’ll see, there are no major differences except an additional argument
passed to the $create method and a special syntax used for accessing instances.

8.3.2 Creating behaviors

Behaviors are created the same way as nonvisual components: by calling the $cre-
ate method during the init stage of the client page lifecycle. The only difference is
that you must always pass the associated DOM element as the last argument to $cre-
ate; otherwise, an error will be thrown. The following code shows how to create an
instance of the EmptyBehavior behavior and set the value of its name property:

$create(Samples.EmptyBehavior, {'name':'myEmptyBehavior'}, {}, {},
 $get('elementID'));

Note that you set the value of the name property instead of setting the id property
as you did with nonvisual components. Although there’s no risk in assigning an
ID, client behaviors expose the name property to easily access instances from the
associated element, as the next section explains.

8.3.3 Accessing behaviors

You can access behavior instances by assigning them an ID—through the id prop-
erty—and then passing it to the $find method, as with nonvisual components. By
setting the name property of a client behavior, you can access it through its associ-
ated element. All you have to do is call $find with a string that contains the ID of
the associated element concatenated to the value of the name property through a
$ character.

 Figure 8.8 clarifies this syntax. In the diagram, you set the name property of an
instance of the EmptyBehavior behavior to myEmptyBehavior—and the associated
element has an ID of someElement.

var instance = $find('someElement$myEmptyBehavior');

Behavior’s name

Element ID

Figure 8.8 You can use the $find method to retrieve a reference to an instance of a client behavior
by knowing the ID of the associated DOM element and the value of the behavior’s name property.

282 CHAPTER 8

ASP.NET AJAX client components
If you set the name property, you can also access the behavior through a property
added to the associated element. This property, added by the base class during
the initialization of a new instance of the behavior, has the same “name” as the
behavior. The following statement clarifies what we just said:

var emptyBehaviorInstance = $get('someElement').myEmptyBehavior;

Having covered the syntactic sugar, it’s time to design a real and more complex
behavior. The FormattingBehavior that you’ll build in the next section will let
you manage the style of a text box element in a programmatic way, based on the
events raised by the DOM element. Once you have the behavior up and running,
you’ll learn how to use it in conjunction with CSS to simulate an effect called in-
place edit.

8.3.4 Enhancing a text box element

We’ll guide you step by step through the creation of a client behavior that is able
to programmatically change the CSS class associated with a DOM element in
response to its events. The following example focuses on a specific scenario: the
emulation of the in-place edit functionality.

 “Allow input wherever you have output” is one of the axioms of Alan Cooper, a
famous advocate of UI design. Following his axiom, you’ll implement a form where
the input fields are styled as labels. When the user hovers over a text box, its style
changes to visually suggest that a text field is present—and it effectively appears as
soon as the user gives focus to the text box. When the user tabs away from the text
box or clicks outside it, the text box will be styled to again look like a label. This
kind of functionality is called in-place editing, and it can enhance the appearance
and usability of a web form. If you’re unsure
about the final result, figure 8.9 shows the
example up and running. Let’s open Visual
Studio and start writing some code.

 Based on what you’ve learned in the pre-
vious sections, your mission is to encapsu-
late the client logic into a behavior. In the
class’s prototype, you handle the behavior’s
lifecycle as well as the events raised by the
associated DOM element. The complete code
for the FormattingBehavior behavior is
shown in listing 8.6.

Figure 8.9 The FormattingBehavior
lets you implement the in-place-edit
functionality in a web form. By using CSS,
you can simulate a visual effect that turns
a label into a text field.

Behaviors 283
Type.registerNamespace('Samples');

Samples.FormattingBehavior = function(element) {
 Samples.FormattingBehavior.initializeBase(this, [element]);

 this._hoverCssClass = null;
 this._focusCssClass = null;
 this._currentCssClass = null;
 this._mouseOver = null;
 this._focus = null;

}
Samples.FormattingBehavior.prototype = {
 initialize : function() {
 Samples.FormattingBehavior.callBaseMethod(this,
 'initialize');

 $addHandlers(this.get_element(),
 {
 mouseout:this._onMouseout,
 mouseover:this._onMouseover,
 focus:this._onFocus,
 blur:this._onBlur
 }, this);
 },

 dispose : function() {
 $clearHandlers(this.get_element());

 Samples.FormattingBehavior.callBaseMethod(this,
 'dispose');
 },

 _onMouseover : function() {
 this._mouseOver = true;
 this._setCssClass();
 },

 _onMouseout : function() {
 this._mouseOver = false;
 this._setCssClass();
 },

 _onFocus : function() {
 this._focus = true;

Listing 8.6 Code for the FormattingBehavior class

FieldsB

Behavior’s
lifecycle

C

Event
handlersD

284 CHAPTER 8

ASP.NET AJAX client components
 this._setCssClass();
 },

 _onBlur : function() {
 this._focus = false;
 this._setCssClass();
 },

 _setCssClass : function() {
 if (this._currentCssClass) {
 Sys.UI.DomElement.removeCssClass(this._element,
 this._currentCssClass);
 this._currentCssClass = null;
 }

 if (this._error) {
 this._currentCssClass = this._errorCssClass;
 }
 else if (this._focus) {
 this._currentCssClass = this._focusCssClass;
 }
 else if (this._mouseOver) {
 this._currentCssClass = this._hoverCssClass;
 }

 if (this._currentCssClass) {
 Sys.UI.DomElement.addCssClass(this._element,
 this._currentCssClass);
 }
 },

 get_hoverCssClass : function() {
 return this._hoverCssClass;
 },

 set_hoverCssClass : function(value) {
 this._hoverCssClass = value;
 },

 get_focusCssClass : function() {
 return this._focusCssClass;
 },

 set_focusCssClass : function(value) {
 this._focusCssClass = value;
 }
}
Samples.FormattingBehavior.registerClass(
 ➥'Samples.FormattingBehavior', Sys.UI.Behavior);

Event
handlersD

PropertiesE

Behaviors 285
The code in listing 8.6 shows how a client behavior is typically structured. In the
constructor, you declare the class fields B. For example, _focusCssClass and
_hoverCssClass store strings with the names of the CSS classes you want to assign
when the associated element is hovered over or focused on. The other fields keep
track of the current state of the associated element. For example, _focus and
_mouseOver are Boolean values that tell whether you gave focus to the text box or
you’re hovering over it with the mouse.

 In the prototype object, you find the overrides of the initialize and dispose
methods C. FormattingBehavior uses the $addHandlers method to hook up the
mouseover, mouseout, focus, and blur events of the associated DOM element.
Then, the same handlers are detached in the dispose method, using the $clear-
Handlers shortcut. Both the $addHandlers and $clearHandlers shortcuts were
discussed in section 2.3.

 Next, you find the event handlers D, which you use to set the state of the ele-
ment based on the event that it raised. Each event handler calls the _setCssClass
method, which takes care of switching the element’s CSS class based on the event
raised. Finally, a relevant portion of the code is used to declare the client proper-
ties E, which are needed if you want to take advantage of the $create method to
configure a new instance of the client behavior.

 Let’s take time to copy the code for the client behavior to a JavaScript file and
then reference it in an ASP.NET page through the ScriptManager control. This
should be the easiest part if you read the previous chapters of the book. Listing 8.7
shows the code for simulating the in-place-edit effect in a simple form; embed this
code in the form tag of the ASP.NET page.

<div class="form">
 <div>
 Name:
 <asp:TextBox ID="Name" runat="server"></asp:TextBox>
 </div>
 <div>
 Last Name:
 <asp:TextBox ID="LastName" runat="server"></asp:TextBox>
 </div>
</div>

<script type="text/javascript">
<!--
 Sys.Application.add_init(pageInit);

Listing 8.7 Simulating the in-place edit functionality with the FormattingBehavior

286 CHAPTER 8

ASP.NET AJAX client components
 function pageInit(sender, e) {
 $create(Samples.FormattingBehavior,
 {
 'hoverCssClass':'field_hover',
 'focusCssClass':'field_focus'
 },
 {}, {}, $get('Name'));

 $create(Samples.FormattingBehavior,
 {
 'hoverCssClass':'field_hover',
 'focusCssClass':'field_focus'
 },
 {}, {}, $get('LastName'));
 }
//-->
</script>

The simple form declared in listing 8.7 consists of two text boxes. With a little
imagination, you can think of it as a simplified version of a more complex form
used for collecting user data. Note that the pageInit function—which handles
the init event of the Application object—includes two $create statements. Each
statement is used to create an instance of the FormattingBehavior behavior and
wire it to the corresponding text box element. The values of the hoverCssClass
and focusCssClass properties supplied in the $create statement are the names
of the CSS classes used to obtain the in-place-edit effect. The CSS file used in the
example is as follows; you should reference it in the ASP.NET page before running
the example:

input {
 border: solid 2px #ffffff;
 margin: -2px;
}

.form div
{
 margin-bottom: 5px;
}

.field_hover {
 border: dashed 2px #ababab;
}

.field_focus {
 border: solid 2px Green;
}

Controls 287
Behaviors let you encapsulate a portion of client logic and plug it into a DOM ele-
ment. Multiple behaviors can be associated with a single element, so a DOM ele-
ment can acquire, at the same time, the client functionality provided by your
behavior and, say, a third-party behavior. The client functionality of the element is
the sum of the client capabilities provided by each behavior.

 In the next section, we’ll experiment with controls, the other category of visual
components. We’ll follow an approach similar to that used for behaviors. You’ll
start by creating a simple control, and then we’ll explain how to create instances
of controls and how to access them in the application code. Finally, you’ll see how
to create custom controls. This will give you full control over ASP.NET AJAX
client components.

8.4 Controls

Just like behaviors, controls are visual components associated with DOM elements.
Conceptually, a control differs from a behavior in the sense that instead of just pro-
viding client functionality, a control usually represents—or wraps—the element, to
provide additional properties and methods that extend its programming interface.
In ASP.NET, for example, a text box element is represented on the server side by the
TextBox control. You can program against a TextBox object to specify how the ele-
ment’s markup is rendered in the page. In the same manner, you can have a Text-
Box control on the client side and program against it using JavaScript.

 In the following sections, we’ll explore client controls and focus on a couple of
scenarios where they’re useful. We’ll show you how to create an element wrapper
and how to use a control to program against a block of structured markup code, instead
of a single DOM element. In chapter 11, we’ll explain how you can use a control to
program against a DOM element using the XML Script declarative language.

8.4.1 Sys.UI.Control

A control is a client class that derives from the base Sys.UI.Control class. In turn,
Sys.UI.Control is a child class of Sys.Component. Controls have an associated
DOM element that is passed to the constructor during instantiation and returned
by the get_element method. In the same manner as with behaviors, let’s start by
looking at the simplest control—an empty control. The code for the EmptyControl
class is shown in listing 8.8.

288 CHAPTER 8

ASP.NET AJAX client components
Type.registerNamespace('Samples');

Samples.EmptyControl = function(element) {
 Samples.EmptyControl.initializeBase(this, [element]);
}
Samples.EmptyControl.prototype = {
 initialize : function() {
 Samples.EmptyControl.callBaseMethod(this, 'initialize');
 },

 dispose : function() {
 Samples.EmptyControl.callBaseMethod(this, 'dispose');
 }
}
Samples.EmptyControl.registerClass('Samples.EmptyControl',
 Sys.UI.Control);

An empty control is identical to an empty behavior, except that you derive from the
Sys.UI.Control class. As usual, both the initialize and dispose methods are typ-
ically overridden to perform the initialization and cleanup of an instance.

 The rules for creating and accessing controls, outlined in the next section, are
simple, and the differences from behaviors are minimal. Let’s examine them
before you begin coding custom controls.

8.4.2 Creating controls

Being client components, controls are created with a $create statement during
the init stage of the client page lifecycle. A control must always be associated with
a DOM element; otherwise, an error will be thrown at runtime by the Microsoft
Ajax Library. The following code shows how to create an instance of the Empty-
Control control, which you coded in listing 8.8, using the $create method:

$create(Samples.EmptyControl, {}, {}, {}, $get('elementID'));

As usual, the last argument passed to $create is the associated DOM element,
retrieved with a call to the $get method. The argument passed to $get is the ID of
the DOM element. A control is instantiated in the same manner as a nonvisual
component, as we explained in section 8.2.1. Now, let’s peek at how controls are
accessed in web pages.

Listing 8.8 The simplest control is an empty control.

Controls 289
8.4.3 Accessing controls

Because controls are client components, you can access them with the $find
method, passing the ID of the control as an argument.

NOTE The ID of a control can’t be set programmatically. It’s automatically set
by the Sys.UI.Control class to the same ID as the associated element.
You can get a reference to the control by passing the ID of the associated
DOM element to $find.

Another way to access a control is through the associated element. Because an ele-
ment can have one and only one associated control, a property called control—
which stores the reference to the control—is created on the DOM element when
the control is initialized. Supposing that you have a DOM element stored in the
someElement variable, the following statement accesses the associated control (if
it exists, of course) and stores a reference in the controlInstance variable:

var controlInstance = someElement.control;

Next, we’ll examine two examples of custom controls created with the Microsoft
Ajax Library. The first example is relative to an element wrapper: a control called
TextBox that wraps a text box element on the client side. The second example illus-
trates how to use client controls to work on a block of structured markup code.

8.4.4 Creating an element wrapper: text box

The first client control you’ll create is an element wrapper: a control that repre-
sents a DOM element on the client side. Your mission is to wrap a text box element
with a client TextBox control. The reasons for using an element wrapper are var-
ied. In this case, you want to be able to prevent the web form from being submit-
ted when the Enter key is pressed in the text field, as normally happens in a web
page. The logic needed to accomplish this task is controlled through a public
property called ignoreEnterKey, which is exposed by the control. If you set the
property to true, a press of the Enter key in the text field is ignored. If the prop-
erty is set to false, the form is submitted to the server. Listing 8.9 shows the code
for the Samples.TextBox control.

290 CHAPTER 8

ASP.NET AJAX client components
Type.registerNamespace('Samples');

Samples.TextBox = function(element) {
 Samples.TextBox.initializeBase(this, [element]);

 this._ignoreEnterKey = false;
}
Samples.TextBox.prototype = {
 initialize : function() {
 Samples.TextBox.callBaseMethod(this, 'initialize');

 $addHandlers(this.get_element(),
 {keypress:this._onKeyPress}, this);
 },

 dispose : function() {

 $clearHandlers(this.get_element());

 Samples.TextBox.callBaseMethod(this, 'dispose');
 },

 _onKeyPress : function(evt) {
 if(this._ignoreEnterKey && evt.charCode == 13) {
 evt.preventDefault();
 }
 },

 get_ignoreEnterKey : function() {
 return this._ignoreEnterKey;
 },

 set_ignoreEnterKey : function(value) {
 this._ignoreEnterKey = value;
 }
}
Samples.TextBox.registerClass('Samples.TextBox', Sys.UI.Control);

The structure of a control is similar to that of a behavior. As always, you see the over-
rides of the initialize and dispose methods B, where you attach and detach han-
dlers for the events raised by the associated element. In this example, you’re
interested in handling the text box’s keypress event, which notifies you of any key
pressed by the user in the text field. The corresponding event handler C—

Listing 8.9 Code for the Samples.TextBox control

Control
lifecycle

B

Event
handler

C

Controls 291
_onKeyPress—does a check to determine if the ignoreEnterKey property is set to
true and if the user pressed the Enter key. If the check is positive, it calls the pre-
ventDefault method on the event object to prevent execution of the event’s default
action. This, in turn, prevents the form from being submitted to the server. This
functionality can be enabled or disabled through the ignoreEnterKey property.

 To test the control, create a new ASP.NET AJAX page, declare a text box ele-
ment, and associate it with a new instance of the TextBox control, as shown in list-
ing 8.10.

<input type="text" id="myTextBox" />

<script type="text/javascript">
Sys.Application.add_init(pageInit);

function pageInit() {
 $create(Samples.TextBox, {'ignoreEnterKey':true}, {}, {},
 $get('myTextBox'));
}
</script>

It’s no surprise that you instantiate the component with a $create statement dur-
ing the init stage of the page lifecycle. The $create method sets the value of the
ignoreEnterKey property to true. This activates the custom functionality and
executes its logic every time the user presses a key in the text field.

TIP The ASP.NET Futures package contains more examples of element wrap-
pers, such as Label, HyperLink, and Button controls. They’re defined in
the PreviewScript.js file; you’ll use them in chapter 11, when we discuss
the XML Script declarative language. Appendix A contains instructions
for how to install the ASP.NET Futures package.

So far, you’ve seen examples of visual components (both behaviors and controls)
that target a single DOM element. In many situations, you have to deal with com-
plex UIs that consist of a hierarchy of DOM elements—a DOM subtree.

 For example, the UI of a menu is composed by many different elements—
labels, hyperlinks, panels—and the same is true for complex controls such as the
ASP.NET GridView or the TreeView. Is it possible to associate a client control with
the complex markup code rendered by a GridView or—in general—to a portion
of structured markup code? Are you restricted to developing only simple ele-
ment wrappers?

Listing 8.10 Code for testing the Samples.TextBox control

292 CHAPTER 8

ASP.NET AJAX client components
 The good news is that you can develop client controls associated with complex
markup code. The trick is easy: You embed the markup in a container element
(for example, a div or a span element), and you use the container as the associ-
ated element of the client control. Then, you access the child elements in the con-
trol. To clarify this concept, the following section explains how you can create a
client control that relies on multiple DOM elements to implement a photo gallery.

8.4.5 Creating a PhotoGallery control

The goal of the following example is to
show you how to build a client control
with a complex UI. By complex, we mean
the UI can consist of as many elements as
you need, although you’ll use only a few
in order to keep things simple. The result
of the work will be a dynamic photo gal-
lery control that you can use to browse a
set of photos saved on the website. The
URLs of the photos are stored in an array
passed to the control. Figure 8.10 shows
the result.

 The block of static HTML that you use
for the PhotoGallery control is contained
in a div element. As you can see by look-
ing at the code in listing 8.11, the UI is rep-
resented by two buttons—used for
browsing the previous or next photo in
the sequence—and an img element with an ID of gal_image that displays the cur-
rent photo. A second img element—gal_progress—displays an indicator during
the loading of the next photo.

<div id="photoGallery">
 <div>
 <input type="button" id="gal_prevButton" value="Prev" />
 <input type="button" id="gal_nextButton" value="Next" />
 <img id="gal_progress" src="Images/progress.gif"
 alt="" style="visibility:hidden" />
 </div>

Listing 8.11 HTML code for the UI of the PhotoGallery control

Figure 8.10 A simple photo gallery control
realized by associating a client control to a
portion of structured markup code.

Controls 293
 <div>

 </div>
</div>

For simplicity, the HTML code doesn’t take into account the control’s style, which
is available in the code you can download from the Manning website at http://
www.manning.com/gallo.

 Let’s examine the code for the client control. Because you want to develop a
custom client control, you create a class called Samples.PhotoGallery that inher-
its from the base Sys.UI.Control class. To help you better understand what’s
going on, we’ve split the code into two listings. The first contains the code for the
constructor and the call to the registerClass method. The second shows the
code for the prototype object of the Samples.PhotoGallery class. You must
merge the two listings to obtain the complete code for the PhotoGallery control.
Let’s start by exploring the code in the constructor, shown in listing 8.12.

Type.registerNamespace('Samples');

Samples.PhotoGallery = function(element) {
 Samples.PhotoGallery.initializeBase(this, [element]);

 this._imageElement = null;
 this._nextElement = null;
 this._prevElement = null;
 this._progressElement = null;
 this._images = [];
 this._index = -1;
 this._imgPreload = null;
}
Samples.ImageGallery.registerClass('Samples.PhotoGallery',
 Sys.UI.Control);

The constructor, as usual, contains the class fields. The first four fields, whose
names end with the word Element, hold references to the child nodes of the asso-
ciated DOM element. Although the containing div element becomes the associ-
ated element of the PhotoGallery control, the child elements that you need to
access are stored in some of the control’s fields.

 The _images array holds the URLs of the photos to display, and the _index
variable keeps track of the index of the URL in the array. Finally, _imgPreload

Listing 8.12 Code for the PhotoGallery class’s constructor

294 CHAPTER 8

ASP.NET AJAX client components
holds a dynamic img element that is responsible for loading the next photo while
the current one is still displayed. As you’ll see in chapter 10, this lets you play cool
transitions between photos in the sequence.

 The prototype object of the PhotoGallery control contains all the logic needed
to load and browse the photos; see listing 8.13.

Samples.PhotoGallery.prototype = {
 initialize : function() {
 Samples.PhotoGallery.callBaseMethod(this, 'initialize');

 $addHandlers(this._nextElement,
 {click: this.viewNext}, this);
 $addHandlers(this._prevElement,
 {click: this.viewPrev}, this);

 this._imgPreload = document.createElement('IMG');
 $addHandlers(this._imgPreload,
 {load: this._onimageElementLoaded}, this);

 if(this._index >= 0) {
 this._render();
 }
 },

 dispose : function() {
 $clearHandlers(this._prevElement);
 $clearHandlers(this._nextElement);
 $clearHandlers(this._imgPreload);

 Samples.PhotoGallery.callBaseMethod(this, 'dispose');
 },

 viewPrev : function(evt) {
 if(this._index > 0) {
 this._index--;
 this._render();
 }
 },

 viewNext : function(evt) {
 if(this._index < this._images.length - 1) {
 this._index++;
 this._render();
 }
 },

Listing 8.13 Prototype of the PhotoGallery control

Attach event
handlers

B

Detach event
handlers

C

Controls 295
 _render : function() {
 this._prevElement.disabled = (this._index == 0);
 this._nextElement.disabled =
 (this._index == this._images.length - 1);

 this._progressElement.style.visibility = 'visible';

 this._imgPreload.src = this._images[this._index];
 },

 _onimageElementLoaded : function() {
 this._displayImage();
 },

 _displayImage : function() {
 this._progressElement.style.visibility = 'hidden';

 this._imageElement.src = this._images[this._index];
 },

 get_images : function() {
 return this._images;
 },

 set_images : function(value) {
 this._images = value;

 if(this._images.length > 0) {
 this._index = 0;

 if(this.get_isInitialized()) {
 this._render();
 }
 }
 },

 get_prevElement : function() {
 return this._prevElement;
 },

 set_prevElement : function(value) {
 this._prevElement = value;
 },

 get_nextElement : function() {
 return this._nextElement;
 },

 set_nextElement : function(value) {
 this._nextElement = value;
 },

Display
next photo

D

Display loading
indicator

Preload
image

Hide
indicator

Display
image

296 CHAPTER 8

ASP.NET AJAX client components

 get_imageElement : function() {
 return this._imageElement;
 },

 set_imageElement : function(value) {
 this._imageElement = value;
 },

 get_progressElement : function() {
 return this._progressElement;
 },

 set_progressElement : function(value) {
 this._progressElement = value;
 }
}

As usual, the initialize method is used to set up the control and to wire the
events of the encapsulated DOM elements B. In this case, you’re interested in the
click events of the two buttons. During the initialize phase, you also create the
dynamic img element used to preload the next photo. In the dispose method C,
you perform the inverse job: You detach the event handlers and dispose the
dynamic img element.

 All of the control’s logic is encapsulated in the methods defined in the proto-
type. As soon as one of the buttons is clicked, the corresponding handler—view-

Prev or viewNext, respectively—is invoked. In turn, the handler calls the _render
method, which is responsible for displaying the previous or next photo based on
the button clicked. To display a photo, the _render method D performs the fol-
lowing steps:

4 It determines if you’ve reached the beginning or the end of the collection.
If so, it disables or enables the buttons accordingly to avoid going out of the
bounds of the _images array.

5 It displays the (previously hidden) indicator to suggest that the next photo
is being loaded.

6 It preloads the next photo by taking its URL from the _images array and
assigning it to the src attribute of the dynamic img element, stored in the
_imgPreload variable.

As soon as the next photo is loaded, the load event of the dynamic img element is
fired, and the corresponding handler—_onImageLoaded—is invoked. The handler

Controls 297
calls the _displayImage method, which displays the photo by assigning its URL to
the static img element. If you want to use the PhotoGallery control, you need to con-
figure a new instance by passing the references to the DOM elements that it needs
to access in the $create statement. This is shown in listing 8.14.

<script type="text/javascript">
<!--
 Sys.Application.add_init(pageInit);

 function pageInit(sender, e) {
 $create(Samples.PhotoGallery,
 {
 'imageElement': $get('gal_image'),
 'prevElement': $get('gal_prevButton'),
 'nextElement': $get('gal_nextButton'),
 'progressElement': $get('gal_progress'),
 'images': ['Album/photo1.jpg', 'Album/photo2.jpg',
 'Album/photo3.jpg']
 },
 {},
 {},
 $get('photoGallery')
);
 }
//-->
</script>

The configuration of the new instance through the $create method is possible
thanks to the client properties exposed by the PhotoGallery control. The control
exposes a property for each child element it wants to access, as you can verify by look-
ing again at the code in listing 8.14 Note how, in the previous listing, the images
property is set to a JavaScript array that contains the URLs of the photos to display.

 With this example, our discussion of client controls and the client component
model is complete. Now that you know how to create client components and access
them at runtime, we’ll concentrate on the server-side capabilities of ASP.NET. The
next chapter—a fundamental one—will teach you how to wire client components
to ASP.NET server controls by automating the generation of $create statements on
the server side.

Listing 8.14 Creating an instance of the PhotoGallery control

298 CHAPTER 8

ASP.NET AJAX client components
8.5 Summary

The Microsoft Ajax Library leverages a model for creating client components that
closely resembles the one used to create server components with the .NET frame-
work. In this chapter, we introduced the Sys.Component class and discussed the fea-
tures provided by the client component model. Then, we talked about visual and
nonvisual components—so called depending on whether they have a UI—and
explained how instances of client components are created and accessed at runtime.

 Visual components can be behaviors or controls, and they’re always associated
with a DOM element. Behaviors are components that add client capabilities to a
DOM element without changing its basic functionality. Controls are used to repre-
sent DOM elements on the client side; they can also provide specific client func-
tionality to a block of structured markup code.

 Now that you possess the skills required to create client components, you’re
ready to learn how to wire them to ASP.NET server controls in order to create pow-
erful Ajax-enabled controls.

Building
Ajax-enabled controls
In this chapter:
■ Script descriptors
■ Introduction to Ajax-enabled controls
■ Extenders
■ Script controls
299

300 CHAPTER 9

Building Ajax-enabled controls
The power of technologies like ASP.NET lies in the ability to work with server con-
trols and, particularly, web controls. A web control is an object that abstracts and
manages a particular portion of the web page, be it a single element (like a text
box) or a table (like a grid). A web control covers the tasks from the rendering of
the HTML to postback handling and communication with other server controls.
All of the web control’s logic is programmed, encapsulated, and executed on the
server side as soon as you declare the web control on the page.

 Having learned how to use the Microsoft Ajax Library to build client compo-
nents, you’ll find out in this chapter how to wire them programmatically to
ASP.NET server controls to obtain Ajax-enabled controls. By the end of the chap-
ter, you’ll learn how to build ASP.NET server controls with Ajax capabilities.

9.1 Script descriptors

In chapter 8, you saw how to create instances of client components in the page.
Because the instantiation of a client component is a process that involves numer-
ous steps besides creating a new instance, the $create method is a valid ally for
successfully accomplishing this task.

 All the listings in the previous chapter assumed that the $create statements
were manually injected in a JavaScript code block in the page and executed dur-
ing the init stage of the client page lifecycle. Given the possibilities that the
ASP.NET server model offers, here’s an idea: If you can use $create to automate
the process of instantiating a client component, why not also automate the pro-
cess of injecting a $create statement into the page? If a server control can per-
form this job, it can instantiate the client components it needs. Then, you can
proudly say that you’ve created an Ajax-enabled server control.

 The first step toward this goal is mastering the concept of script descriptors. A
script descriptor is an object that can be used on the server side to generate a
$create statement programmatically. To understand how script descriptors work
and the reasons behind their usage, let’s introduce some classes provided by the
ASP.NET AJAX server framework.

9.1.1 Script descriptor hierarchy

Script descriptors are classes contained in the System.Web.Extensions assembly.
They’re part of the System.Web.UI namespace and derive from a base abstract
class called ScriptDescriptor. Figure 9.1 shows that the hierarchy of script
descriptors reflects how classes are organized in the client component model. For
example, the ScriptComponentDescriptor class represents the script descriptor

Script descriptors 301
associated with the client Sys.Component class. The same kind of mapping exists
between the other classes, as the figure suggests.

 Script descriptors behave in an interesting manner. For example, if you create
an instance of the ScriptComponentDescriptor class, you can generate the $cre-
ate statement needed for creating and configuring an instance of a nonvisual
component. In a similar manner, you can use instances of the ScriptBehaviorDe-
scriptor and ScriptControlDescriptor classes to generate—on the server
side—the $create statements needed for instantiating and configuring a client
behavior or a control, on the client side.

 Programmatically generating a $create statement offers two main advantages.
First, you don’t need to hard-code any strings in the application logic. Instead,
you can instruct the script descriptor to generate the $create statement based,
for example, on the values of some server-side variables. Second, an external
object can receive the script descriptor and use it to generate the $create state-
ment at the right time. As we’ll explain in section 9.2.1, the ScriptManager con-
trol can query a server control for a list of script descriptors. All the script
descriptors are collected during the Render phase of the server page lifecycle and
used to render all the $create statements in the markup code sent to the browser.

 Before we go deeper into this process, you need more confidence with script
descriptors, because you’ll use them often when programming Ajax-enabled con-
trols. In the following sections, we’ll focus on the ScriptBehaviorDescriptor

Server framework Client framework

ScriptBehaviorDescriptor ScriptControlDescriptor

ScriptComponentDescriptor

ScriptDescriptor

Sys.Component

Sys.UI.Behavior Sys.UI.Control

Figure 9.1 The hierarchy of script descriptors reflects, on the server side, the hierarchy of
client components.

302 CHAPTER 9

Building Ajax-enabled controls
and ScriptControlDescriptor classes, which inherit almost all their functional-
ity from the ScriptComponentDescriptor class. You’ll gain a comprehensive
knowledge of how script descriptors work.

9.1.2 Describing a behavior

Whenever you need to instantiate a client
behavior, you can generate the corresponding
$create statement on the server side by using an
instance of the ScriptBehaviorDescriptor class.
The relevant properties and methods exposed by
this class are shown in figure 9.2.

 To understand how it works, let’s take a $cre-
ate statement and see how you can generate the
same statement using a script descriptor. The
$create statement that you used in section 8.3.2
to create an instance of the FormattingBehavior
behavior is perfect:

$create(Samples.FormattingBehavior,
 {'hoverCssClass':'field_hover', 'focusCssClass':'field_focus'},
 {}, {}, $get('Name'));

To generate the same statement on the server side, you can create an instance of
the ScriptBehaviorDescriptor class. Then, you pass the client type and the cli-
ent ID of the associated DOM element as strings to the class constructor:

ScriptBehaviorDescriptor desc =
 new ScriptBehaviorDescriptor("Samples.FormattingBehavior",
 "Name");

The client ID of the associated element, passed as the second argument to the
class constructor, becomes the argument of the $get method when the $create
statement is generated by the script descriptor. The string with the type of the cli-
ent control becomes the first argument passed to the $create method.

 The goal of the script descriptors is to configure the parameters accepted by
the $create method. Figure 9.3 will help you understand which methods of the
script descriptor classes are used to build the parameters passed to the $create
statement generated on the server side.

 The first and last arguments passed to $create—the client type and the associ-
ated element, respectively—are passed as arguments to the constructor of the script

+
+
+
+
+
+
+
+

ScriptBehaviorDescriptor

Type
ElementID
Name
AddProperty ()
AddElementProperty ()
AddComponentProperty()
AddEvent ()
AddScriptProperty ()

Figure 9.2 Public properties
and methods exposed by the
ScriptBehaviorDescriptor
class

Script descriptors 303
descriptor. An exception is represented by the ScriptComponentDescriptor class,
whose constructor accepts only a parameter with the client type (a nonvisual com-
ponent doesn’t have an associated DOM element).

 As you know from chapter 8, the second argument accepted by $create is an
object that maps properties of the client component to their values. To add a
name/value pair to this object, call the AddProperty method of the script descrip-
tor instance, passing the name of the client property and its value as arguments.
Here’s the code:

ScriptBehaviorDescriptor desc =
 new ScriptBehaviorDescriptor("Samples.FormattingBehavior",
 "Name");

desc.AddProperty("name", "myFormattingBehavior");

The previous code will generate the following $create statement:

$create(Samples.FormattingBehavior,
 {"name":"myFormattingBehavior"}, {}, {}, $get("Name"));

Note that the second argument passed to AddProperty is of type object. The
script descriptor takes care of serializing the value using the JSON data format
and embedding it in the $create statement. The AddElementProperty method
behaves in a manner similar to AddProperty, but the value passed as an argument
is the client ID of a DOM element and is passed to the $get method in the gener-
ated $create statement. The other methods exposed by the ScriptBehaviorDe-
scriptor class—and by the other script descriptors—set the remaining
parameters accepted by $create. They are as follows:

 $get('associatedElementID'));

AddEvent()

AddProperty()
AddElementProperty()
AddScriptProperty()

.ctor

AddComponentProperty()

.ctor

$create(Samples.MyComponent, {},{}, {},

Figure 9.3 How the methods exposed by a script descriptor are used to generate a
$create statement

304 CHAPTER 9

Building Ajax-enabled controls
■ AddEvent—Adds an event handler for a client event. The first argument
passed to AddEvent is the name of the client event to subscribe. The second
argument is the name of the JavaScript function (a global function or an
instance method) that will handle it.

■ AddComponentProperty—Maps an ID to a client component reference. The
value passed to the method is a string with the ID of a client component.
This ID is used in conjunction with $find to retrieve a reference to the com-
ponent and assign it to the corresponding property.

■ AddScriptProperty—Assigns some JavaScript code as the value for a given
client property. Instead of being encoded as a JSON string, the value passed
to this method is embedded as is and evaluated as JavaScript code at runtime.

These are all the methods you need to use to generate a $create statement. The
same methods are found in the ScriptControlDescriptor class, which is the
script descriptor associated with a client control. Examining the ScriptControl-
Descriptor class, as we’ll do in the next section, will help you become even more
confident with script descriptors.

9.1.3 Describing a control

If you want to generate a $create statement to instan-
tiate a client control, the ScriptControlDescriptor
class is the right choice. Figure 9.4 shows the relevant
properties and methods exposed by this class.

 Except for the Name property (which is relevant
only for behaviors), the ScriptControlDescriptor
class exposes the same properties and methods
found in the ScriptBehaviorDescriptor class.
Again, let’s take a $create statement and explain
which methods you have to call to generate it with a
script descriptor. What about the $create statement
you used to build an instance of the PhotoGallery
control in section 8.4.5? The code for this slightly
more complex statement is shown in listing 9.1.

ScriptControlDescriptor
+ T ype
+ Elem entID
+ AddProper ty()
+ AddElem entProper ty()
+ AddC om ponentProper ty()
+ AddEvent()
+ AddScr ip tProper ty()

Figure 9.4 Public properties
and methods exposed by the
ScriptControlDescriptor
class

Script descriptors 305
$create(Samples.PhotoGallery,
 {
 'imageElement': $get('gal_image'),
 'prevElement': $get('gal_prevButton'),
 'nextElement': $get('gal_nextButton'),
 'progressElement': $get('gal_progress'),
 'images': ['Album/photo1.jpg', 'Album/photo2.jpg',
 'Album/photo3.jpg']
 },
 {},
 {},
 $get('photoGallery'));

How can you instruct a ScriptControlDescriptor object to generate a string
with the same statement? The answer is shown in listing 9.2, where you use the
AddElementProperty method to assign references to DOM elements to the prop-
erties of the client control. Note how the array of strings passed to AddProperty in
the last statement is turned into a JSON array in the generated $create statement.

ScriptControlDescriptor desc =
 new ScriptControlDescriptor("Samples.PhotoGallery",
 "photoGallery");

desc.AddElementProperty("imageElement", "gal_image");
desc.AddElementProperty("prevElement", "gal_prevButton");
desc.AddElementProperty("nextElement", "gal_nextButton");
desc.AddElementProperty("progressElement", "gal_progress");
desc.AddProperty("images", new string[3] { "Album/photo1.jpg",
 "Album/photo2.jpg", "Album/photo3.jpg")});

Usually, client components are contained in external JavaScript files that must be
loaded in the web page. In ASP.NET AJAX, you can do this by referencing the
script files manually in the Scripts section of the ScriptManager control. For this
reason, it’s not enough for a server control to generate $create statements using
script descriptors. You also need a way to automatically generate script tags with
references to external JavaScript files. This is the purpose of the ScriptReference
class, as we’ll clarify in the following section.

Listing 9.1 Example $create statement used to create an instance of the
 PhotoGallery control

Listing 9.2 A script descriptor for configuring an instance of the PhotoGallery control

306 CHAPTER 9

Building Ajax-enabled controls
9.1.4 Script references

In an ASP.NET AJAX page, you can use the mighty ScriptManager control to load
all the JavaScript files needed by the page. To do this, you declare one or multiple
ScriptReference elements in the Scripts section of the ScriptManager control.
As you know from previous chapters, a ScriptReference object exposes all the
properties needed for locating a script file, whether it’s stored in one of the fold-
ers of the website or embedded in an assembly as a web resource.

 If a server control wants to provide a list of script files to load in the web page,
it can create instances of the ScriptReference class programmatically. For exam-
ple, the following code uses an instance of the ScriptReference class to reference
a script file called MyScriptFile.js, located in the website’s ScriptLibrary folder:

ScriptReference scriptRef = new ScriptReference();
scriptRef.Path =
 Page.ResolveClientUrl("~/ScriptLibrary/MyScriptFile.js");

If the file is embedded as a web resource in a separate assembly, you have to spec-
ify values for the Assembly and Name properties. The Assembly property holds the
name of the assembly that embeds the file. The Name property stores a string with
the name of the registered web resource.

NOTE Web resources are a feature of ASP.NET 2.0 that let you embed files,
images, and documents in an assembly and load them in a web page
through a HTTP handler. In section 4.3.1 we briefly discussed how to
embed web resources in an assembly. To learn more about web
resources, browse to http://support.microsoft.com/kb/910442/en-us.

Script descriptors and script references are the objects you need to build Ajax-
enabled controls. Now that you have a foundation, let’s examine how ASP.NET server
controls can take advantage of these objects to become Ajax-enabled controls.

9.2 Introduction to Ajax-enabled controls

An ASP.NET AJAX-enabled control (or an Ajax-enabled control, as we’ll call it) is an
ASP.NET server control. It’s associated with one or more client components that
add client functionality to the markup code it renders. Usually, an Ajax-enabled
control renders, in the page, some HTML code and one or more $create state-
ments, depending on the client components it wants to instantiate. The Ajax-
enabled control also takes care of loading the necessary script files in the page.

 The problem of how to programmatically generate a $create statement with-
out relying on hard-coded strings has been solved with the introduction of script
descriptors. The ScriptReference object lets you programmatically reference a

http://support.microsoft.com/kb/910442/en-us
http://support.microsoft.com/kb/910442/en-us

Introduction to Ajax-enabled controls 307
script file. You need to understand how and when these objects are used to render
the various pieces of information in the page—in the right place, at the right
time. The ScriptManager is the control elected to accomplish this delicate task. In
this section, we’ll shed some light on the mechanisms that let a server control
become an Ajax-enabled control.

9.2.1 How Ajax-enabled controls work

When a server control wants to take advantage of client components, it must do
two things. First, it must implement an interface that specifies which kind of Ajax-
enabled control it’s going to be. We’ll introduce the two kinds of Ajax-enabled
controls in the next section, but it’s important to point out that by implementing
one of these interfaces, a server control declares that it can provide a list of script
references and script descriptors.

 Second, it must register itself with the ScriptManager during the PreRender and
Render phases of the server page lifecycle. When this happens, the ScriptManager
knows that a server control wishes to instantiate client components. The Script-
Manager queries the server control for a list of script descriptors and script refer-
ences. The returned objects are used to render the $create statements and the
script tags in the web page. Figure 9.5 uses an activity diagram to show the
sequence of events involved in this rather elaborate process.

 The diagram shows that the registration procedure begins during the PreRen-
der stage of the server page lifecycle, where the Ajax-enabled control registers

Page ScriptManager Ajax-enabled Control

1. PreRender

3. Render

2. Register Control

4. Register Script Descriptors

5. Get Script Descriptors

6. Get Script References
7. Render Scripts

Figure 9.5 An Ajax-enabled control must register itself with the ScriptManager control. The
registration procedure starts during the PreRender stage and is completed in the Render stage.

308 CHAPTER 9

Building Ajax-enabled controls
itself with the ScriptManager (event 2). During this step, the ScriptManager gets a
list of script references from the server control. The second step happens during
the Render phase, when the Ajax-enabled control provides the ScriptManager
with a list of script descriptors (event 4). Finally, the ScriptManager renders in the
page both the script tags with the references to the script files and the $create
statements generated by the script descriptors.

 If you’re worried by the complexity of this procedure, have no fear. To make
things simpler, ASP.NET AJAX provides base classes for creating Ajax-enabled con-
trols. The advantage of deriving from these classes is that they take care of per-
forming the entire registration procedure automatically. Creating an Ajax-
enabled control is a matter of implementing the methods that return the list of
script descriptors and script references. These methods are defined in the inter-
faces implemented by the base classes. As a consequence, you have to override
them to get the job done.

 In some situations, it’s not possible to derive from a base class, and you need to
implement the procedure manually. Later in the chapter, we’ll go under the hood
of the registration procedure. Now, it’s time to introduce the base classes and
interfaces that you’ll use to create Ajax-enabled controls.

9.2.2 Extenders and script controls

In the previous section, we mentioned that you can choose between two kinds of
Ajax-enabled controls: You can create either an extender or a script control. The dif-
ference between these two types of controls is mainly conceptual, because the
goal of both is to provide a list of script descriptors and script references.

 You can think of extenders as providers of client functionality. The goal of an
extender is to attach client components to an existing server control at any time,
without the need to derive a new class. To understand why you have to bother with
extenders, suppose you’ve created a client component that adds auto-complete
functionality—like the one provided by Google Suggest—to a text box element.
To wire the client component to the text box, you could create an AutoComplete-
TextBox class that derives from the TextBox class and provides the necessary
script references and script descriptors.

 Another approach keeps the TextBox class and lets an external object do the
work of wiring a client component to the TextBox control. In this scenario, the
external object is the extender, and the TextBox becomes the extended control or
target control. An extender can upgrade or extend existing server controls to Ajax-
enabled controls without the need to replace them with custom server controls.
This concept is represented in figure 9.6.

Introduction to Ajax-enabled controls 309
An ASP.NET AJAX extender is conceptually similar to an extender provider in Win-
dows Forms. It keeps a portion of functionality separated from a server control,
and it provides additional properties to the extended control. These properties
are used, in turn, to configure the properties of the client component that are
associated with the extended control.

NOTE To learn more about extender providers in Windows Forms, browse to
http://msdn2.microsoft.com/en-us/library/ms171835.aspx.

If you decide that both the server and the client capabilities should be specified in
the same place, you need a script control. It’s a server control that is created as an
Ajax-enabled control and can provide script references and script descriptors with-
out the need for an external object. Returning to the example of an auto-complete
text box, the AutoCompleteTextBox class that derives from TextBox is a good can-
didate for becoming a script control. This model is illustrated in figure 9.7.

 Deciding whether to build an extender or a script control is a design choice
you should make based on the requirements of the web application. Typically, an
extender is the right choice when you want to plug client functionality into an
existing server control, without the need to create a new control. A script control
is the right choice if you want complete control over its capabilities both on the
server and on the client side.

ClientServer

Extended Control

Extender

Script References

Script Descriptors

.aspx

Figure 9.6 In the extender model, a server control receives the client functionality from the
Extender control, which provides the script references and script descriptors needed to wire
a client component to the extended control.

http://msdn2.microsoft.com/en-us/library/ms171835.aspx
http://msdn2.microsoft.com/en-us/library/ms171835.aspx

310 CHAPTER 9

Building Ajax-enabled controls
From a slightly different point of view, the choice between an extender and a
script control can be determined by the kind of client component you want to
wire to the server control. Creating an extender is typically the right choice if you
want to wire a client behavior to a DOM element. Because an element can have
multiple behaviors, it makes sense to wire—on the server side—multiple extend-
ers to a server control. Each extender contributes to the client capabilities of the
extended control by providing a different client behavior. On the other hand,
because a DOM element can be associated with one and only one client control, it
makes more sense to associate the client control with a script control and have all
the properties needed for configuring the client component embedded in the
server control.

 We discussed client components and the client component model in great
detail in chapter 8. Figure 9.8 shows the base interfaces and classes you can use to
create extenders and script controls.

ClientServer

Script Control

Script References

Script Descriptors

.aspx

Figure 9.7 A script control is a server control that can both render markup code and provide
the script references and script descriptors needed to instantiate client components.

IExtenderControl

ExtenderControl

IScriptControl

ScriptControl

Figure 9.8
Base interface and classes
provided by ASP.NET AJAX to
create Ajax-enabled controls

Extenders 311
There are two base classes: ExtenderControl and ScriptControl. The Extender-
Control class creates extenders and implements the IExtenderControl interface.
The ScriptControl class creates script controls and implements the IScriptCon-
trol interface.

 The following sections will dive into the details of extenders and script con-
trols. You’ll study the base interfaces and classes and learn how to use them to cre-
ate Ajax-enabled controls. Let’s start the discussion by introducing extenders.

9.3 Extenders

You already know that an extender’s goal is to wire a client component to an exist-
ing server control. You need to know how the client functionality is attached to
the extended control.

 The easiest way to build an extender is to declare a class that inherits from the
base ExtenderControl class. This class implements an interface called IExtender-
Control and takes care of registering the extender with the ScriptManager control.
A derived class should override the methods defined in the IExtenderControl
interface. Let’s look at this interface before you develop your first extender.

9.3.1 The IExtenderControl interface

The IExtenderControl interface defines the contract to which a class adheres to
become an extender. Figure 9.9 shows the methods implemented by the inter-
face, which have the following responsibilities:

■ GetScriptDescriptors—Returns the list of script descriptors. The method
receives a targetControl parameter that contains a reference to the
extended control.

■ GetScriptReferences—Returns the list of ScriptReference objects. Each
instance represents a script file that will be loaded in the page.

>

«inter face»
IExtenderControl

+GetScriptDescriptors(in targetControl : Control) : IEnumerable<ScriptDescriptor
+GetScriptReferences() : IEnumerable<ScriptReference>

Figure 9.9 Methods defined in the IExtenderControl interface

312 CHAPTER 9

Building Ajax-enabled controls
Interestingly, both methods defined in the interface return an IEnumerable type.
When you implement the method or override it in a derived class, you can return
an array or a list or (if you’re using C# 2.0) implement an iterator to return the
lists of script descriptors and script references.

NOTE Iterators are a feature introduced in C# 2.0 to support foreach iteration
in a class or a struct without the need to implement the entire IEnumer-
able interface. If you want to know more about C# iterators, browse to
http://msdn2.microsoft.com/en-us/library/65zzykke.aspx.

Even if your main job is to override the methods defined in the IExtenderCon-
trol interface, it’s important to know how the registration procedure is particu-
larized for an extender. In the following section, we’ll look at how an extender is
registered with the ScriptManager control.

9.3.2 Extender registration

The process of registering with the ScriptManager lets the extender be recog-
nized as an Ajax-enabled control. It’s a two-step process:

1 During the PreRender stage, you call RegisterExtenderControl method,
passing the extender instance and the extended control as arguments.

2 During the Render stage, you call the RegisterScriptDescriptors method
to register the script descriptors.

As shown in figure 9.10, the first part of the registration procedure involves calling
the RegisterExtenderControl method on the ScriptManager control (event 2).
This method receives the current extender instance and the extended control as
arguments. The registration procedure is completed during the Render phase,
where you call the RegisterScriptDescriptors method on the ScriptManager,
passing the current extender instance as an argument (event 4).

 Luckily, the ExtenderControl class takes care of performing the registration
procedure automatically on your behalf. Because you always create a new
extender by deriving from the ExtenderControl class, you don’t need to worry
about the implementation details. However, when we discuss script controls,
you’ll discover that in some situations you need to manually register the Ajax-
enabled control with the ScriptManager. For this reason, we’ll postpone a deeper
examination of the registration procedure until section 9.4.

http://msdn2.microsoft.com/en-us/library/65zzykke.aspx
http://msdn2.microsoft.com/en-us/library/65zzykke.aspx

Extenders 313
In general, the design of an extender follows three phases:

1 Build a client component—either a behavior or a control—that encapsu-
lates the client functionality you intend to provide to a server control.

2 The real development of the extender starts. Determine which properties
of the client component you want to configure on the server side. You can
map them to a group of server properties and perform the configuration of
the client component through the extender.

3 Build the extender class, which provides the lists of script references and
script descriptors to the ScriptManager control.

Let’s apply this design strategy to a concrete example. In the following section,
you’ll create an extender for the FormattingBehavior behavior you built in chap-
ter 8. This will let you wire the behavior to an ASP.NET TextBox and configure it
on the server side.

9.3.3 An extender for FormattingBehavior

In chapter 8, we demonstrated how to enrich a text box element by simulating in-
place edit functionality with the help of a client behavior. Now that you’ve imple-
mented this client component, it would be great if you could wire it to TextBox

Page ScriptManager Extender

1. PreRender

3. Render

5. Get Script Descriptors

6. Get Script References
7. Render Scripts

2. RegisterExtenderControl(this, targetControl);

4. RegisterScriptDescriptors(this);

Figure 9.10 An extender must be registered with the ScriptManager control during the
PreRender and Render phases of the server page lifecycle.

314 CHAPTER 9

Building Ajax-enabled controls
controls in different web applications. If your intention is to not write one more
line of JavaScript code or change any web controls declared in a form, building an
extender is the right path. If you have the code for the FormattingBehavior class
stored in a JavaScript file you’ve completed the first phase of the design strategy
and can move to the second phase.

Mapping client properties to server properties
Once the client functionality is encapsulated in a client component, you need to
filter the client properties you want to configure on the server side. The goal is to
create corresponding properties in the extender class and use them to set the
value of the client properties. How is this possible? By using a script descriptor.

 Recall from chapter 8 that the FormattingBehavior class exposes two proper-
ties called hoverCssClass and focusCssClass. They hold the names of the CSS
classes used by the client behavior. To set their values from the server side, you
need to expose corresponding properties in the extender. In preparation, it’s use-
ful to draw a table that shows the mapping between properties of the client com-
ponent and properties of the extender; see table 9.1.

Once you’ve drawn the table, you’re ready to move to the third and final, where
you’ll create the extender class and implement the server-side logic.

Creating the extender
An extender is a class that inherits from the base System.Web.UI.ExtenderCon-
trol class. Usually, an extender includes a group of server properties and the over-
rides of the methods defined in the IExtenderControl interface. Other than these,
an extender shouldn’t perform any tasks. Because the purpose of an extender is to
provide script descriptors and script references, all the other logic added to the
extender should relate to the configuration of the associated client component.

 Let’s return to the example. The extender class is called FormattingExtender,
and its code is shown in listing 9.3.

Table 9.1 Mappings between client properties and extender properties

Client property Extender property

hoverCssClass HoverCssClass

focusCssClass FocusCssClass

Extenders 315
using System;
using System.Collections.Generic;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

[TargetControlType(typeof(TextBox))]
public class FormattingExtender : ExtenderControl
{
 public string HoverCssClass
 {
 get { return (string)ViewState["HoverCssClass"]; }
 set { ViewState["HoverCssClass"] = value; }
 }

 public string FocusCssClass
 {
 get { return (string)ViewState["FocusCssClass"]; }
 set { ViewState["FocusCssClass"] = value; }
 }

 public string ScriptPath
 {
 get { return (string)ViewState["ScriptPath"]; }
 set { ViewState["ScriptPath"] = value; }
 }

 protected override IEnumerable<ScriptDescriptor>
 GetScriptDescriptors(Control targetControl)
 {
 ScriptBehaviorDescriptor desc = new
 ScriptBehaviorDescriptor("Samples.FormattingBehavior",
 targetControl.ClientID);

 desc.AddProperty("hoverCssClass", this.HoverCssClass);
 desc.AddProperty("focusCssClass", this.FocusCssClass);

 yield return desc;
 }

 protected override IEnumerable<ScriptReference>
 GetScriptReferences()|
 {
 yield return new
 ScriptReference(Page.ResolveClientUrl(this.ScriptPath));
 }
}

Listing 9.3 Code for the FormattingExtender class

PropertiesB

IExtenderControl
methods

C

316 CHAPTER 9

Building Ajax-enabled controls
Above the class declaration is a TargetControlType attribute. Its goal is to put a
constraint on the types of server controls that the extender can extend. Because
you pass typeof(TextBox) as an argument to the attribute, only TextBox controls
can be extended by the FormattingExtender. Associating the extender with a web
control other than a TextBox will cause a server exception to be thrown by
ASP.NET. If you pass typeof(Control), all the controls can be extended, although
it doesn’t make much sense given the kind of client functionality that, in this
example, you’ll add to the target control.

 The FormattingExtender class exposes a ScriptPath property B that isn’t
listed in table 9.1. This property specifies the location of the JavaScript file that
contains the code of the FormattingBehavior behavior. The property isn’t listed
in the table because it’s not exposed by the client component. You’ll need it when
you create the ScriptReference instance that you return to the ScriptManager,
so it makes sense to have it in the extender control.

 The other two properties are those shown in table 9.1. The HoverCssClass
property stores the value assigned to the hoverCssClass property of the client
behavior. The same is true for the FocusCssClass property. Note that you store
and retrieve all the values from the ViewState of the extender control.

 For the first time, you can see how the methods C defined in the IEx-
tenderControl interface are overridden in the extender control. As expected,
the GetScriptDescriptors method returns a script descriptor for the Format-
tingBehavior behavior. In the override, the script descriptor uses the values of
the server HoverCssClass and FocusCssClass properties to build a $create
statement that contains values for the client hoverCssClass and focusCssClass
properties. Finally, the GetScriptReferences method returns a ScriptRefer-
ence instance with the information needed to load the right JavaScript file in the
page. The location of the file is configured through the ScriptPath property.

NOTE Listing 9.3 uses the yield return construct in both the GetScriptRef-
erences and GetScriptDescriptors methods. You use the yield key-
word when implementing a C# iterator, to signal the end of an iteration.

Without much effort, you’ve built your first extender. But we’ve left some things
unsaid: For example, how do you wire an extender to an ASP.NET control? The
next section will teach you how to declare and configure extenders.

9.3.4 Using an extender

An extender is nothing more than a custom ASP.NET server control. The Extender-
Control class derives from the base Control class; an extender is registered and

Extenders 317
declared in an ASP.NET page like any other
server control. Figure 9.11 shows how the files
are organized in the sample ASP.NET AJAX-
enabled website that you can download at
http://www.manning.com/gallo.

 As you can see, the extender class is con-
tained in the App_Code directory. The file
with the code for the client behavior, Format-
tingBehavior.js, is located in the ScriptLi-
brary folder. Another possible configuration
has both the server class and the JavaScript file stored in a separate assembly; we’ll
cover this scenario in section 9.4, but the same rules apply to extenders.

 To use the extender in an ASP.NET page, all you have to do is register the
namespace that contains the FormattingExtender class in the page that will use it:

<%@ Register Namespace="Samples" TagPrefix="samples" %>

Now, you have to wire the extender to its target control. The code in listing 9.4
shows a simple ASP.NET TextBox with an associated FormattingExtender control.

<%-- Extended Control --%>
<asp:TextBox ID="txtName" runat="server"></asp:TextBox>

<%-- Extender --%>
<samples:FormattingExtender ID="FormattingExtender1" runat="server"
 TargetControlID="txtName"
 HoverCssClass="hover"
 FocusCssClass="focus"
 ScriptPath="~/ScriptLibrary/FormattingBehavior.js" />

All the magic of extenders happens when you set the extender control’s Target-
ControlID property to the ID of the target control. In listing 9.4, you extend the
TextBox by assigning its ID to the TargetControlID property of the Format-
tingExtender control. The remaining properties of the extender are used to con-
figure the CSS classes used by the client behavior. The ScriptPath property
contains the path to the FormattingBehavior.js file.

NOTE The TargetControlID property is the main property exposed by an
extender. You always set this property, because it identifies the server
control that’s wired to the extender.

Listing 9.4 How to extend an ASP.NET web control declaratively

Figure 9.11 The extender class and the
JavaScript file with the code for the client
component can be hosted in an ASP.NET
AJAX-enabled website.

http://www.manning.com/gallo
http://www.manning.com/gallo

318 CHAPTER 9

Building Ajax-enabled controls
An extender can also be instantiated programmatically, as shown in listing 9.5.
The extender must be always added to the same container as the target control; if
the target control is declared in an UpdatePanel, the extender must be declared
in the panel. If the target control is declared in the form tag, then the extender
must be added to the Page.Form.Controls collection.

FormattingExtender ext = new FormattingExtender();
ext.ID = "FormattingExtender1";
ext.TargetControlID = txtName.ID;
ext.HoverCssClass = "hover";
ext.FocusCssClass = "focus";
ext.ScriptPath = "~/ScriptLibrary/FormattingBehavior.js";

Page.Form.Controls.Add(ext);

To complete our discussion, let’s run the ASP.NET page and look at the source
code sent to the browser. After a bit of scrolling, you can find the script file
required by the FormattingExtender control:

<script src="FormattingBehavior.js" type="text/javascript"></script>

After more scrolling, you see the $create statement generated by the script
descriptor that the FormattingExtender returned to the ScriptManager control:

Sys.Application.add_init(function() {
 $create(Samples.FormattingBehavior,
 {"focusCssClass":"focus","hoverCssClass":"hover"},
 null,
 null,
 $get("txtLastName"));
});

Note how the $create statement is correctly injected into a JavaScript function
that handles the init event raised by Sys.Application. So far, so good; every-
thing went as expected.

 Keep in mind that an extender is used to wire a client component to an existing
server control. The extender provides the necessary script references and script
descriptors to the ScriptManager control. It does so by overriding the methods
defined in the IScriptControl interface. An extender control can also expose
properties to enable the configuration of the properties exposed by the client com-
ponent. Now, we’re ready to explore the second category of Ajax-enabled controls:
script controls.

Listing 9.5 Extending an ASP.NET web control programmatically

Script controls 319
9.4 Script controls

Extenders are great for providing client functionality to existing server controls in
an incremental way. In many cases, though, you don’t want or don’t need an
external control to wire client components to a server control. To describe both
the server-side and the client-side functionalities in a single place, the server con-
trol is a good candidate for becoming a script control. Script controls are server
controls that can provide script references and script descriptors without relying
on an external object.

 Building a script control can be slightly more difficult than building an
extender. If you’re writing the control from scratch, you can safely derive from the
base ScriptControl class, which takes care of registering the script control with
the ScriptManager under the hood. Coding the control is similar to coding an
extender. The only difference is that the properties used to configure the client
component and the overrides of the methods defined in the IScriptControl
interface are embedded in the control rather than in a different object.

 In some situations, you’ll want to turn an existing control into a script control.
In such a case, you have to derive a class from the existing server control and man-
ually implement the IScriptControl interface. The following sections will intro-
duce the IScriptControl interface and provide some insights as to how you
implement the registration procedure.

9.4.1 The IScriptControl interface

The IScriptControl interface must be implemented by every script control. It’s
similar to the IExtenderControl interface, as shown in figure 9.12. A script con-
trol doesn’t have a target control; this is why the RegisterScriptDescriptors
method doesn’t receive a reference to the extended control as happened with
extenders. The methods defined by the IScriptControl interface have the fol-
lowing responsibilities:

■ GetScriptDescriptors—Returns the list of script descriptors

■ GetScriptReferences—Returns the list of ScriptReference instances

«inter face»
IScriptControl

+GetScriptDescriptors() : IEnumerable<ScriptDescriptor>
+GetScriptReferences() : IEnumerable<ScriptReference>

Figure 9.12
Methods defined in the
IScriptControl interface

320 CHAPTER 9

Building Ajax-enabled controls
Sometimes you can’t derive from the base ScriptControl class. Therefore, it’s
important to be familiar with what happens behind the scenes during the registra-
tion of a script control.

9.4.2 Script control registration

Registration with the ScriptManager is necessary in order to recognize a script
control as an Ajax-enabled control. It’s a two-step process similar to that used for
extenders:

■ During the PreRender stage, you call the RegisterScriptControl method,
passing the script control instance as an argument.

■ During the Render stage, you call the RegisterScriptDescriptors method
to register the script descriptors.

As shown in figure 9.13, the first part of the registration procedure involves call-
ing the RegisterScriptControl method on the ScriptManager control (event 2).
This method receives the current script control instance as an argument. The reg-
istration procedure is completed during the Render phase, where you call the
RegisterScriptDescriptors method, passing the current script control instance
as an argument (event 4).

Page ScriptManager ScriptControl

1. PreRender

3. Render

5. Get Script Descriptors

6. Get Script References
7. Render Scripts

2. RegisterScriptControl(this);

4. RegisterScriptDescriptors(this);

Figure 9.13 A script control registers with the ScriptManager control during the
PreRender and Render phases of the server page lifecycle.

Script controls 321
As promised, let’s dive into the implementation details of the registration proce-
dure. Typically, a script control that will register itself with the ScriptManager
overrides the OnPreRender and OnRender methods. In the OnPreRender method,
you first check that a ScriptManager control is present on the page before calling
the RegisterScriptControl method. Listing 9.6 shows a possible override of the
OnPreRender method.

protected override void OnPreRender(EventArgs e)
{
 ScriptManager manager = ScriptManager.GetCurrent(this.Page);

 if (manager != null)
 {
 manager.RegisterScriptControl(this);
 }
 else
 {
 throw new InvalidOperationException("A ScriptManager
 ➥must be present in the page.");
 }
}

The registration procedure is completed in the Render method, where the script
control registers its script descriptors by calling the RegisterScriptDescriptors
method on the ScriptManager instance; see listing 9.7.

protected override void Render(HtmlTextWriter writer)
{
 base.Render(writer);

 ScriptManager.GetCurrent(this.Page)
 .RegisterScriptDescriptors(this);
}

In the OnRender override, you don’t perform the check on the ScriptManager
because you already did it during the OnPreRender stage. This registration proce-
dure should be implemented whenever you can’t derive from the base Script-
Control class. But when does it happen? The following section provides some
design guidelines for creating script controls.

Listing 9.6 Overriding the OnPreRender method to register the script control

Listing 9.7 Overriding the Render method to register the script descriptors

Check that
ScriptManager
is declared

Register with
ScriptManager

Register script
descriptors

322 CHAPTER 9

Building Ajax-enabled controls
9.4.3 Design strategies

With ASP.NET, there are many ways to create a server control. For example, you
can extend an existing server control by deriving from its class. As an alternative,
you can inherit from one of the base classes contained in the System.Web.UI
namespace. You can also build a control by compositing existing web controls. In
this case, CompositeControl is the base class. If you need data-binding capabili-
ties, the DataBoundControl class lets you easily build such controls. In addition,
you can create a custom control with an associated declarative template. This is
called a web user control; you’ve probably created many in your web applications. It
consists of a .ascx file that contains the declarative markup code and a code-
behind file that encapsulates the control’s logic.

 All these custom server controls can acquire Ajax capabilities and become
script controls. Table 9.2 shows the categories of ASP.NET server controls and the
suggested strategy for turning them into Ajax-enabled controls.

Now that you have all the tools you need to start developing script controls, let’s
build one. You’ll start by adding Ajax capabilities to the Login control, a server
control shipped with ASP.NET 2.0 that, unfortunately, isn’t compatible with the
UpdatePanel at the moment. A quick look at table 9.2 reveals that in order to
upgrade the Login control to a script control, you should derive from the Login
class and implement the IScriptControl interface. That’s what you’ll do in the
next section.

9.4.4 Adding Ajax to the ASP.NET Login control

Trying to put the ASP.NET Login control in an UpdatePanel reveals a sad truth:
The control suddenly stops working, and your dreams of performing user authen-
tication in the background vanish miserably. But you don’t have to wait until the

Table 9.2 How to Ajax-enable different kinds of ASP.NET server controls

I want to… How to Ajax-enable it

Extend an existing web control. Create an extender, or implement the
IScriptControl interface.

Derive from System.Web.UI.WebControl,
create a composite control, or create a data-
bound control.

Implement the IScriptControl interface.

Start with an Ajax-enabled control. Derive from System.Web.UI.ScriptControl.

Create a web user control. Implement the IScriptControl interface.

Script controls 323
next update of the ASP.NET framework to make your dreams come true. With the
help of a script control and a client control that leverages the ASP.NET authentica-
tion service, you can perform the desired task.

 As we explained in chapter 4, the Microsoft Ajax Library provides a way to
access the authentication service asynchronously on the client side. Given this
premise, you’ll create a client control that accesses the markup code rendered by
the Login control and performs the authentication using an Ajax request. Finally,
you’ll create a script control that extends the existing Login control and instanti-
ates the client control in the page.

 Let’s start by setting up the project for the new AjaxLogin control. Earlier, we
explained how to embed the code files in an ASP.NET AJAX-enabled website. This
time, we’ll explain how to embed the files in a separate assembly referenced by
the website.

Setting up the project
In Visual Studio 2005, let’s create a new class-library project called ScriptCon-
trols. The Visual Studio template creates a file called Class1.cs, which you can
safely delete. Add a new JavaScript file called AjaxLogin.js. Select it and, in the
Properties panel, set the Build Action prop-
erty to Embedded Resource. This instructs
the compiler to embed the file as an assem-
bly resource that can be loaded in a web
page. The AjaxLogin.js file—empty at the
moment—will contain the client AjaxLogin
control that adds Ajax capabilities to the
server Login control. To complete the
project layout, add a new class file called
AjaxLogin.cs to obtain the structure shown
in figure 9.14.

Creating the AjaxLogin client control
The client AjaxLogin control leverages the authentication service proxy to
authenticate a user on the client side using an asynchronous HTTP request. We
discussed the authentication service and the other application services provided
by ASP.NET AJAX in chapter 5. Once the user types her username and password
and clicks the login button, you invoke the Sys.Services.AuthenticationSer-
vice.login method, which performs the authentication procedure asynchro-
nously. Listing 9.8 shows the code for the AjaxLogin client control; add it to the
AjaxLogin.js file created in the project.

Figure 9.14 Structure of the
ScriptControls project

324 CHAPTER 9

Building Ajax-enabled controls
Type.registerNamespace("Samples");

Samples.AjaxLogin = function(element) {
 Samples.AjaxLogin.initializeBase(this, [element]);

 this._userName = null;
 this._password = null;
 this._rememberMe = null;
 this._loginButton = null;
}

Samples.AjaxLogin.prototype = {
 initialize : function() {
 Samples.AjaxLogin.callBaseMethod(this, 'initialize');

 $addHandlers(this._loginButton,
 {'click':this._onLoginButtonClicked}, this);
 },

 dispose : function() {
 $clearHandlers(this._loginButton);
 Samples.AjaxLogin.callBaseMethod(this, 'dispose');
 },

 _onLoginButtonClicked : function(e) {
 var validationResult =
 typeof(Page_ClientValidate) == 'function'
 && Page_ClientValidate(this._validationGroup) ?
 true : false;

 if (validationResult) {
 Sys.Services.AuthenticationService.login(
 this._userName.value,
 this._password.value,
 this._rememberMe && this._rememberMe.checked,
 null,
 null,
 Function.createDelegate(this,
 this._onLoginComplete),
 Function.createDelegate(this,
 this._onLoginFailed)
);
 }
 e.preventDefault();
 },

Listing 9.8 Code for the AjaxLogin client class

FieldsB

Authentication
logic

C

Script controls 325
 _onLoginComplete : function(result) {
 if (result) {
 alert("Login Succeeded");
 }
 else {
 alert("Login failed");
 }
 },

 _onLoginFailed : function(err) {
 alert(err.get_message());
 },

 set_UserName : function(value) {
 this._userName = value;
 },

 set_Password : function(value) {
 this._password = value;
 },

 set_RememberMe : function(value) {
 this._rememberMe = value;
 },

 set_LoginButton : function(value) {
 this._loginButton = value;
 },

 get_UserName : function() {
 return this._userName ;
 },

 get_Password : function() {
 return this._password ;
 },

 get_RememberMe : function() {
 return this._rememberMe ;
 },

 get_LoginButton : function() {
 return this._loginButton ;
 }

};
Samples.AjaxLogin.registerClass('Samples.AjaxLogin',
 Sys.UI.Control);

Display login
status

D

Display error
message

E

326 CHAPTER 9

Building Ajax-enabled controls
The objective is to associate the client control with the DOM element that contains
the markup code rendered by the Login control. You use some fields B to store ref-
erences to the child DOM elements. For example, the _userName and _password
variables hold references to the text boxes rendered by the Login control.

 In the prototype object, the initialize and dispose methods are overridden
to participate in the client control’s lifecycle. You use the $addHandlers method
to attach a handler for the click event of the login button. The event handler C,
_onLoginButtonClicked, takes into account the ASP.NET validators and invokes
the login method of the authentication service proxy.

 The last two parameters passed to the login method are callbacks. The first,
_onLoginComplete, is invoked if the authentication procedure succeeds (whether
the user has supplied right or wrong credentials); it D displays the login status in
a message box. The second callback, E _onLoginFailed, is called if something
goes wrong during the call to the authentication service proxy.

Building the AjaxLogin script control
The script control you’ll build derives from the Login class and implements the
IScriptControl interface. You need to override the methods of the IScriptCon-
trol interface as well as implement the registration procedure. You do so in the
code for the AjaxLogin class, shown in listing 9.9.

using System;
using System.Collections.Generic;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

[assembly: WebResource("ScriptControls.AjaxLogin.js",
 "text/javascript")]

namespace Samples
{
 public class AjaxLogin : Login, IScriptControl
 {
 private void AddControlIDToScript(
 ScriptComponentDescriptor descriptor, string id)
 {
 Control control = this.FindControl(id);

 if (control != null)
 {
 descriptor.AddElementProperty(id,

Listing 9.9 Code for the AjaxLogin server class

Register web
resource

B

Helper
method to
find child
controls

C

Script controls 327
 control.ClientID);
 }
 else
 {
 throw new NullReferenceException(
 ➥"Unable to find a control with the
 ➥given ID");
 }
 }

 protected override void OnPreRender(EventArgs e)
 {
 base.OnPreRender(e);

 ScriptManager manager;
 manager = ScriptManager.GetCurrent(this.Page);

 if (manager == null)
 {
 throw new InvalidOperationException("A ScriptManager
 is required on the page.");
 }

 manager.RegisterScriptControl(this);
 }

 protected override void Render(HtmlTextWriter writer)
 {
 base.Render(writer);

 ScriptManager.GetCurrent(this.Page)
 .RegisterScriptDescriptors(this);
 }

 public IEnumerable<ScriptDescriptor> GetScriptDescriptors()
 {
 ScriptControlDescriptor descriptor = new
 ScriptControlDescriptor("Samples.AjaxLogin",
 this.ClientID);

 AddControlIDToScript(descriptor, "UserName");
 AddControlIDToScript(descriptor, "Password");
 AddControlIDToScript(descriptor, "RememberMe");
 AddControlIDToScript(descriptor, "LoginButton");

 yield return descriptor;
 }

Script descriptor D

328 CHAPTER 9

Building Ajax-enabled controls
 public IEnumerable<ScriptReference> GetScriptReferences()
 {
 yield return new ScriptReference(
 Page.ClientScript.GetWebResourceUrl(typeof(AjaxLogin),
 "ScriptControls.AjaxLogin.js"));
 }
 }
}

The WebResource attribute B that decorates the AjaxLogin class is used to regis-
ter the AjaxLogin.js file as a web resource. This is necessary in order to be able to
reference the script file in a web page.

 The first method declared in the AjaxLogin class C is a helper method that
can find child controls declared in the base Login control. It’s also responsible for
assigning references to the child elements to properties of the client control. As
you saw in section 9.1.2, script descriptors D expose a method called AddEle-
mentProperty that passes the client ID of an element to the $get method in the
generated $create statement.

 The subsequent two methods are the overrides of the OnPreRender and Render
methods. You implement the registration procedure in the same way outlined in
section 9.4.2. The last two methods are the overrides of the methods defined in the
IScriptControl interface. As expected, the GetScriptDescriptors method
returns a script descriptor for creating an instance of the AjaxLogin client control.
In the GetScriptReferences method, you use the GetWebResourceUrl E method
to load the AjaxLogin.js file (embedded as a web resource) in the web page.

 The first script control is complete, and you can safely build the project. As
with extenders, we need to address a final point before we end our discussion of
Ajax-enabled controls.

9.4.5 Using a script control

To use a script control, follow the usual steps required for using an ASP.NET server
control. Steps include registering the custom control in the page using a @Regis-
ter directive, like so:

<%@ Register Assembly="ScriptControls" Namespace="Samples"
TagPrefix="samples" %>

This code takes into account the fact that the script control is located in a separate
assembly. You need to specify the values for the Assembly and the Namespace
attributes.

Reference
web resource

E

Script controls 329
 Once the control is registered in the page, you can declare it as in the follow-
ing example:

<samples:AjaxLogin ID="AjaxLogin1" runat="server" />

Because the AjaxLogin control plays with the authentication service, you need to
enable the service in the web.config file through the authenticationService
element:

<system.web.extensions>
 <scripting>
 <webServices>
 <authenticationService enabled="true" />
 </webService>
 </scripting>
</system.web.extensions>

You must also enable forms authentication to take advantage of the AjaxLogin
control.

NOTE You can learn about forms authentication by browsing to the following
URL: http://msdn2.microsoft.com/en-us/library/aa480476.aspx.

The final touch is seeing what is rendered in a page that hosts the AjaxLogin con-
trol; see figure 9.15. The following code was extracted from such a web page:

[...]

<script src="/AspNetAjaxInAction_09/WebResource.axd?d=eoxf8D
 ➥IaviQBVsfEu1YjPF6KBBzaOSU3pQeO_UcQIK309neS2pzazIDzdhCZT9d0&
 ➥t=633122647281397436" type="text/javascript"></script>

[...]

Sys.Application.add_init(function() {
 $create(Samples.AjaxLogin,
 {"LoginButton":$get("AjaxLogin1_LoginButton"),
 "Password":$get("AjaxLogin1_Password"),
 "RememberMe":$get("AjaxLogin1_RememberMe"),
 "UserName":$get("AjaxLogin1_UserName")},
 null, null, $get("AjaxLogin1"));
});

http://msdn2.microsoft.com/en-us/library/aa480476.aspx

330 CHAPTER 9

Building Ajax-enabled controls
As expected, the script tag contains the URL of the AjaxLogin.js file embedded
as a web resource in the ScriptControls assembly. The tag was generated thanks
to the ScriptReference instance returned by the GetScriptReferences method
overridden in the AjaxLogin control. The script descriptor returned by the Ajax-
Login control generated the $create statement contained in the anonymous
function passed as an argument to the add_init method.

9.5 Summary

In this chapter, we discussed how to wire client components to server controls to
obtain Ajax-enabled controls. First, we introduced script descriptors and script
references, which are the main objects used by server controls to instantiate client
components and load script files in a web page.

 Script descriptors can generate the $create statement used to instantiate a cli-
ent component in the page. Script references let you specify the location of a
script file to reference in a static script tag.

 An Ajax-enabled control can return a list of script descriptors and script refer-
ences to the ScriptManager, which in turn injects the generated $create state-
ments and the script tags into the ASP.NET page sent to the browser. Extenders
and script controls are the two kinds of Ajax-enabled controls you can create.

Figure 9.15 The AjaxLogin control running in the Opera browser

Summary 331
Extenders can provide a list of script descriptors and script references to an exist-
ing server control, which becomes the extended control. Script controls are
server controls that don’t need external objects in order to instantiate the client
components they need.

 In the next chapter, we’ll take a lap around the Ajax Control Toolkit, which is
the biggest collection of Ajax-enabled controls available at the moment.

Developing with
the Ajax Control Toolkit
In this chapter:
■ The auto-complete extender
■ Additional properties of extenders
■ The Ajax Control Toolkit API
■ The animation framework
332

A world of extenders 333
The Ajax Control Toolkit is an open source project that Microsoft started in the
early days of ASP.NET AJAX. It’s a collection of extenders, script controls, and cli-
ent components written with the Microsoft Ajax Library. The Toolkit provides a
server API for developing Ajax-enabled controls, a client API for testing client
components, and a framework for creating visual effects and animations.

 The project is located at the CodePlex hosting website (http://www.code-
plex.com) and is owned by Microsoft’s Agility Team. Rather than agile programming
(and all that implies), the name Agility refers to execution agility (meaning the team
is very flexible). Agility Team launched the Toolkit project in late January 2006 to
facilitate the adoption of ASP.NET AJAX extensions among web developers. The
project was soon opened to contributions from the community and now includes
many controls developed by non-Microsoft programmers. A new release of the
project is available nearly every month and ships with the source code for con-
trols, a sample website that demonstrates their usage, and a suite of tests written
with a JavaScript framework for testing. With a bug-tracker hosted at CodePlex
and a dedicated forum on the ASP.NET website, the Toolkit is one of the biggest
repositories of Ajax-enabled controls and one of the best resources for learning
ASP.NET AJAX.

 In this chapter, we’ll explain how the Ajax Control Toolkit leverages the base
framework provided by ASP.NET AJAX extensions. We’ll introduce the properties
added to extenders and show you how to develop Ajax-enabled controls using the
Toolkit’s API. The last part of the chapter is dedicated to the animation frame-
work, a collection of client components for creating visual effects and animations.
Let’s start by introducing the auto-complete extender, one of the numerous con-
trols provided by the Ajax Control Toolkit.

10.1 A world of extenders

The major role in the Ajax Control Toolkit is played by extenders. As we discussed
in chapter 9, extenders are server controls that wire client components to existing
ASP.NET server controls. Once an extender is associated with a server control, the
extended control inherits a new set of properties for configuring the client-side
functionality. Interestingly, all the extenders shipped with the Toolkit are built on
top of a custom API that leverages the one provided by ASP.NET AJAX to build
Ajax-enabled controls. Before we go deep into the Toolkit API, let’s see how to
configure and use one of the many extenders shipped with the Toolkit. To build
the next example, you’ll use the auto-complete extender, which upgrades a sim-
ple ASP.NET TextBox to a text box with auto-completion capabilities. In order to

http://www.codeplex.com
http://www.codeplex.com

334 CHAPTER 10

Developing with the Ajax Control Toolkit
run the examples presented in this chapter, you must reference the Toolkit assem-
bly in your website. Appendix A contains instructions on how to download, install,
and configure the Ajax Control Toolkit.

10.1.1 The auto-complete extender

One of the first and best examples to
demonstrate Ajax capabilities was to
embed an auto-complete text box in a
web page. This kind of text box, usually a
feature of desktop applications, can dis-
play a list of suggested words in a pop-up
panel below the text field. The list of sug-
gestions is obtained by completing the
portion of text typed by the user, as soon
as the user types in the text field. As shown
in figure 10.1, the auto-complete text box
is a good example of how to enhance a
simple text box with client capabilities.

 Making an Ajax request in the back-
ground lets you retrieve the list of sugges-
tions from a database with millions of
records. Without Ajax, you would have to
send all the possible suggestions to the browser, embedded in the web page, and
filter them using JavaScript. Millions of records can lead to a page size measured
in megabytes. With Ajax, the filtering is performed on the server, and the list of
suggestions is updated in real time while the user is typing.

 The auto-complete functionality provided by the auto-complete extender is
implemented in JavaScript. The logic is encapsulated in a client component—a
behavior—called AutoCompleteBehavior. You can wire this component to an
ASP.NET TextBox through the auto-complete extender without writing a single
line of JavaScript code. (Behaviors and other kinds of client components were
covered in detail in chapter 8.)

 The following example will guide you in setting up a web page with an auto-
complete text box similar to the one shown in figure 10.2. This web page should
be part of an ASP.NET AJAX enabled website, which is a website configured for
ASP.NET AJAX. Appendix A contains a tutorial on how to create such a website
using the Visual Studio template shipped with the ASP.NET AJAX extensions

Figure 10.1 Google Suggest (http://
labs.google.com/suggest) features an auto-
complete text box that presents a list of
suggested words with additional information
about their numerical occurrences.

http://labs.google.com/suggest
http://labs.google.com/suggest

A world of extenders 335
installer. You must also reference the AjaxControlToolkit.dll assembly or manually
add it to the website’s bin folder.

 The first step is to create a new page called AutoCompleteExample.aspx. In
Visual Studio 2005, switch to Design mode and drag a TextBox control from the
Toolbox to the page area. Give the TextBox the ID Country. If you have the Tool-
kit controls listed in your Toolbox, drag the AutoCompleteExtender control and
drop it near the TextBox. If you don’t have the Toolkit controls in the Toolbox,
check appendix A for a walkthrough of how to add them. Dragging one of the
Toolkit’s extenders in the page adds the following @Register directive at the top
of the page:

<%@ Register Assembly="AjaxControlToolkit"
 Namespace="AjaxControlToolkit"
 TagPrefix="ajaxToolkit" %>

In the previous code snippet, we replaced the default tag prefix (cc1) with ajax-
Toolkit. If you aren’t using the Visual Studio Designer, you should manually add
the @Register directive at the top of the ASP.NET page. In the Designer, click the
auto-complete extender, and open the Properties panel. The panel shows all the
properties exposed by the extender. Table 10.1 lists each property and the value
assigned to it in the example.

Table 10.1 Values assigned to the properties of the AutoCompleteExtender in the example

Property Description Value

ID ID of the extender control CountryAutoComplete

TargetControlID ID of the target TextBox Country

ServiceURL URL of the web service used to retrieve
the list of suggestions

CountryService.asmx

Figure 10.2
A web page with an
auto-complete text box, built
with an ASP.NET TextBox and
the auto-complete extender

336 CHAPTER 10

Developing with the Ajax Control Toolkit
If you switch to Source mode, you should see that the code in listing 10.1 has been
generated in the page’s form tag. The TargetControlID property of the Auto-
CompleteExtender control is set to the ID of the TextBox. In this way, the TextBox
becomes an extended control and gains the auto-complete capabilities.

<asp:TextBox ID="Country" runat="server"></asp:TextBox>

<asp:AutoCompleteExtender ID="CountryAutoComplete" runat="server"
 TargetControlID="Country"
 ServicePath="~/CountryService.asmx"
 ServiceMethod="GetCountries"
 MinimumPrefixLength="1" />

You can use the AutoCompleteExtender control to configure the client compo-
nent that will be associated with the text box element rendered by the extended
TextBox control. For example, you need to specify the URL of a local ASP.NET web
service and the name of a web method that returns the list of suggestions to dis-
play. The ServicePath property contains the path to the web service, which you’ll
add to the website in a moment. The ServiceMethod property specifies the name
of the web method that will be called to get the list of suggestions. The last prop-
erty, MinimumPrefixLength, determines the number of characters the user must
type before the call to the web service is made.

Web service setup
The web service used in this example is located in the CountryService.asmx file in
the root directory of the website. It exposes a web method named GetCountries,
which returns a list of country names based on the text typed by the user in the
text field. The code for the CountryService web service is shown in listing 10.2.

ServiceMethod Name of the web method that returns the
list of suggestions

GetCountries

MinimumPrefixLength Minimum number of characters needed to
activate the auto-complete functionality

1

Listing 10.1 Code for the ASP.NET TextBox with an associated AutoCompleteExtender
 control

Table 10.1 Values assigned to the properties of the AutoCompleteExtender in the example (continued)

Property Description Value

A world of extenders 337
<%@ WebService Language="C#" Class="CountryService" %>

using System;
using System.IO;
using System.Xml;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Collections.Generic;
using System.Web.Script.Services;

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[ScriptService]
public class CountryService : System.Web.Services.WebService
{
 [WebMethod]
 public string[] GetCountries(string prefixText, int count)
 {
 return GetCountriesFromXml(prefixText, count);
 }
}

The GetCountries method accepts two parameters: prefixTest and count.
These two parameters must always be present in the web method signature and
must be spelled exactly as in listing 10.2 (case matters); otherwise, the extender
won’t work.

 The GetCountries method calls a private method named GetCountries-
FromXml. This method accesses the data store and returns all the countries whose
name starts with the value of the prefixText parameter. The count parameter
specifies the maximum number of countries to return. In the example, you store
the list of countries in an XML file called Countries.xml, located in the website’s
App_Data folder. Listing 10.3 shows a reduced version of the file, which contains
six country names.

<?xml version="1.0" encoding="utf-8" ?>
<Countries>
 <Country>Argentina</Country>
 <Country>Australia</Country>
 <Country>Germany</Country>
 <Country>India</Country>

Listing 10.2 Code for the CountryService web service

Listing 10.3 XML file containing the list of countries

338 CHAPTER 10

Developing with the Ajax Control Toolkit
 <Country>Italy</Country>
 <Country>United States of America</Country>
</Countries>

The XML file contains a root Countries element. The child elements are Country
tags that hold the names of the countries. The GetCountriesFromXml method
parses the XML file and filters the countries based on the values of the prefix-
Text and count parameters, as shown in listing 10.4.

private string[] GetCountriesFromXml(string prefixText, int count)
{
 List<string> suggestions = new List<string>();

 using(XmlTextReader reader = new
 XmlTextReader(HttpContext.Current.Server
 .MapPath("~/Countries.xml")))
 {
 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Element &&
 reader.Name == "Country")
 {
 string stateName = reader.ReadInnerXml();

 if (stateName.StartsWith(prefixText,
 StringComparison.InvariantCultureIgnoreCase))
 {
 suggestions.Add(stateName);

 if (suggestions.Count == count) break;
 }
 }
 }
 }

 return suggestions.ToArray();
}

When a Country element is found in the XML file B, its value is compared with
the prefixText parameter. If prefixText contains a prefix for the current coun-
try C, the name of the country is added to the suggestion list D. If you reach the
maximum number of suggestions allowed, you break out of the loop E. When
the method returns, the array with the country names is serialized in JSON format

Listing 10.4 Code for the GetCountriesFromXml method

Open
XML file

B

Break if count
reached E

Add
suggestion
to listD

Suggestion
found

C

A world of extenders 339
and sent back to the browser. On the client side, the instance of the AutoCom-
pleteBehavior behavior configured and instantiated through the extender is
responsible for displaying the returned strings in a pop-up panel under the
extended text field.

 The auto-complete text box is ready to be tested: Build the website, and run
the AutoCompleteExample.aspx page. When the page is loaded, type some char-
acters in the text field (hint: start with A or I). As soon as you type a character, the
CountryService web service is invoked in the background to retrieve and display
the list of matching suggestions. Figure 10.3 shows the asynchronous requests sent
to the web service as soon as you type in the text field. To debug the HTTP traffic,
we used Firebug, an add-on for the Firefox browser. Appendix B contains an over-
view of Firebug as well as the instructions to download and install it.

 All of the Ajax Control Toolkit’s extenders are used similarly to the auto-com-
plete extender. A great advantage of extenders is that, most of the time, all you
have to do to enhance existing ASP.NET controls with rich client capabilities is
declare an extender in the page and wire it to an ASP.NET server control. As you
saw in the previous example, you do this by setting the extender’s TargetCon-
trolID property to the ID of the extended control. Due to the nature of Extend-
ers, it’s easy to take an existing page and enhance it by adding extenders to server
controls that are already there. In other words, it’s easy to start with what already
works and then enhance it bit by bit by adding Toolkit controls.

Figure 10.3 The Firebug console in Firefox shows the asynchronous requests made
to the web service to retrieve the list of suggestions for the auto-complete text box.

340 CHAPTER 10

Developing with the Ajax Control Toolkit
The Toolkit’s extenders expose additional properties to configure the client com-
ponent that provides the Ajax functionality. These properties are exposed by the
custom ExtenderControlBase class, which is the class from which all Toolkit
extenders derive. This class is part of the Toolkit API for building Ajax-enabled
controls, which we’ll discuss in section 10.2. Now, let’s examine the additional
properties available in the Ajax Control Toolkit’s extenders.

10.1.2 The ScriptPath property

Ajax-enabled controls usually reference a JavaScript file that is loaded in the page
at runtime. This script file contains the code for the client component the Ajax-
enabled control needs to instantiate in the web page. For example, the auto-com-
plete extender needs to create an instance of the AutoCompleteBehavior client
class, as we explained in the previous section. Usually, script files are either
located in folders of the website or embedded as web resources in a separate
assembly. In the case of the Ajax Control Toolkit, all the script files are embedded
as web resources in the AjaxControlToolkit.dll assembly.

 To load a script file from the file system rather than from the Toolkit’s assem-
bly, you can use the ScriptPath property. This property is exposed by all the Tool-
kit’s controls and lets you specify the path to the script file associated with a
Toolkit control. At runtime, this is the script file loaded in the page, instead of the
one embedded in the Toolkit assembly.

 For example, suppose you want to test or debug a modified version of the
AutoCompleteBehavior component. Instead of recompiling the Toolkit project
every time, you can reference the modified script file from the website as follows:

<ajaxToolkit:AutoCompleteExtender ID="AutoComplete1" runat="server"
 TargetControlID="TextBox1"
 ScriptPath="~/ScriptLibrary/AutoComplete.js" />

When the page is loaded, the AutoComplete.js file is loaded in place of the origi-
nal script file associated with the auto-complete extender. In section 10.2, we’ll
discuss how to leverage the Toolkit API to associate a script file with an Ajax-
enabled control. Now, let’s look at another property exposed by Toolkit extend-
ers, which is useful when you want to deal with client components at runtime.

10.1.3 The BehaviorID property

Ajax-enabled controls automatically wire client components to server controls
without the need for you to write a single line of JavaScript code. This is an advan-
tage because you don’t need to be an experienced JavaScript developer to add

A world of extenders 341
rich client capabilities to server controls in your web applications. Most of the
time, wiring a Toolkit extender to the extended control is all you have to do to get
the desired client functionality. Other times, you may need to interact with the cli-
ent components that extenders or script controls instantiate in the page. Such
components often expose methods and events that you can hook up on the client
side as part of the client application’s logic. For example, the slider extender—
one of the Ajax-enabled controls shipped with the Toolkit—can upgrade an
ASP.NET TextBox to a graphical slider, as shown in figure 10.4.

 On the client side, the slider extender creates an instance of the SliderBehav-
ior behavior. This client component exposes a valueChanged event that is raised
whenever the value of the slider changes. (We explained how to expose and han-
dle events raised by client components in section 8.2.3.) To hook up the val-
ueChanged event on the client side, you need to first access the SliderBehavior
instance. To simplify this task, every extender in the Ajax Control Toolkit exposes
a property called BehaviorID, which you can use to assign an ID to the client com-
ponent instantiated by the extender. Listing 10.5 shows how to use the Behav-
iorID property with the slider extender to subscribe to the valueChanged event
on the client side.

<asp:TextBox ID="TextBox1" runat="server" />

<ajaxToolkit:SliderExtender ID="SliderExtender1" runat="server"
 TargetControlID="TextBox1"
 BehaviorID="theSlider" />

You can use the slider to change the font size.

Listing 10.5 Using the BehaviorID property with the slider extender

Figure 10.4 Example of a slider extender running in Safari

342 CHAPTER 10

Developing with the Ajax Control Toolkit
<script type="text/javascript">
<!--
 function pageLoad() {
 var slider = $find('theSlider');

 slider.add_valueChanged(onValueChanged);
 }

 function onValueChanged(sender, e) {
 var slider = sender;
 document.body.style.fontSize = slider.get_Value() + 'px';
 }
//-->
</script>

The value of the BehaviorID property becomes the value of the name property of
the SliderBehavior instance. If you want to access the behavior on the client
side, you have to pass the value of the BehaviorID property to the $find method,
as you did in the pageLoad function.

NOTE In templated controls such as the Repeater or the GridView, the Behav-
iorID property must be manually set to a unique ID for each item ren-
dered by the server control. You must do this because two client
behaviors can’t have the same value for the name property. Also note that
BehaviorID is an optional property. If it isn’t set, the behavior still has an
ID—but it’s based on the client name of the target control.

Once you get a reference to the slider on the client side, you can invoke the
add_valueChanged method to subscribe to the valueChanged event. In the event
handler, onValueChanged, you use the slider’s get_Value method to retrieve its
value and change the font size of the page, as shown in figure 10.4.

TIP The slider extender isn’t the only Ajax-enabled control to expose meth-
ods, properties, and events that can be accessed on the client side. For a
description of all the Ajax Control Toolkit controls, browse the Toolkit
sample website, located at http://ajax.asp.net/ajaxtoolkit/. The sample
website is also available as part of the source code that you can download
from the CodePlex website, as explained in appendix B.

In the previous sections, we’ve mentioned that the Toolkit Ajax-enabled controls
are built on top of a custom API that enhances the base functionality provided by
ASP.NET AJAX. In the next section, we’ll explain how to use the Ajax Control Tool-
kit as a platform for building extenders and script controls. Let’s see what’s under
the hood of the Ajax Control Toolkit API.

http://ajax.asp.net/ajaxtoolkit/
http://ajax.asp.net/ajaxtoolkit/

The Ajax Control Toolkit API 343
10.2 The Ajax Control Toolkit API

As you learned in chapter 9, the ASP.NET AJAX framework provides base classes
and interfaces for creating Ajax-enabled controls. These classes and interfaces
are contained in the System.Web.UI namespace. To create an extender, you
can derive from the ExtenderControl class and override the methods defined in
the IExtenderControl interface. Similarly, to create a script control, you can
inherit from the ScriptControl class and override the methods of the IScript-
Control interface.

 A big advantage of these classes is that they take care of doing most of the work
related to configuring and registering the extender with the ScriptManager con-
trol. The Ajax Control Toolkit API provides new base classes for creating extend-
ers and script controls. They extend the base functionality provided by ASP.NET
AJAX and simplify the process of creating Ajax-enabled controls.

NOTE If you’ve downloaded the source code for the Ajax Control Toolkit, you’ll
find the API classes in the AjaxControlToolkit project, in the Extender-
Base folder. Appendix A provides instructions on how to download and
install the Ajax Control Toolkit.

In the following sections, we’ll tour the main features provided by the Toolkit API.
Let’s start by introducing the Toolkit’s base classes.

10.2.1 The Toolkit’s base classes

On the server side, the Ajax Control Toolkit defines two base classes: Extender-
ControlBase and ScriptControlBase. The ExtenderControlBase class derives
from the ExtenderControl class and is used to create extenders. The ScriptCon-
trolBase class inherits from the ScriptControl class and is used to create script
controls. Figure 10.5 shows the base classes defined in the Toolkit API. All the
classes defined by the API are contained in the AjaxControlToolkit namespace.

ExtenderControl

ExtenderControlBase

ScriptControl

ScriptControlBase

UserControl

ScriptUserControl

System.Web.UI
namespace

AjaxControlToolkit
namespace

Figure 10.5 The Toolkit API provides enhanced base classes for creating extenders and script controls.

344 CHAPTER 10

Developing with the Ajax Control Toolkit
Figure 10.5 shows an additional pair of classes: The Toolkit API defines the Scrip-
tUserControl class as the base class for creating script user controls. These con-
trols are nothing more than web user controls—custom controls with an HTML
template defined in a .ascx file—turned into script controls.

 On the client side, the Microsoft Ajax Library provides the Sys.UI.Behavior
and Sys.UI.Control classes for creating visual components. In turn, the Toolkit
API provides base classes that encapsulate additional functionality for creating
behaviors and controls. These classes are called BehaviorBase and ControlBase,
and they’re shown in figure 10.6.

 For the same reasons outlined in chapter 9, behaviors are usually associated
with extenders. Similarly, client controls are usually associated with script con-
trols. The same reasoning applies to the controls shipped with the Ajax Control
Toolkit. Extenders usually instantiate a client class that derives from the Behav-
iorBase class. In the same way, script controls are usually associated with classes
that inherit from the ControlBase class.

 The main characteristic of the Toolkit API is that it can be considered a meta-
data-driven API. A whole group of metadata attributes are available to decorate
classes, properties, and methods of Ajax-enabled controls.

NOTE Attributes are a declarative way of defining some functionality associated
with a method, a class, a field, or a property. For further reading, please
browse to http://msdn2.microsoft.com/en-us/library/5x6cd29c.aspx.

As we’ll explain in the next section, the purpose of these attributes is to avoid the
explicit override of the methods that return the list of script descriptors and script
references to the ScriptManager control. Script descriptors and script references
are generated by the base classes based on the attributes that decorate the class
members. Sounds attractive, right? Let’s discuss these attributes in more detail.

Sys.UI.Behavior

BehaviorBase

Sys.UI.Control

ControlBase

Sys.UI
namespace

AjaxControlToolkit
namespace

Figure 10.6 The Toolkit API also extends the base functionality on the client side, where
new base classes for creating behaviors and controls are provided.

http://msdn2.microsoft.com/en-us/library/5x6cd29c.aspx
http://msdn2.microsoft.com/en-us/library/5x6cd29c.aspx

The Ajax Control Toolkit API 345
10.2.2 A metadata-driven API

As we mentioned in the previous section, the Toolkit API can build script descrip-
tors and script reference instances by inspecting attributes that decorate class
members. Attributes provide extra information—about a class, a field, a method,
or a property—that you can query using the reflection capabilities offered by the
.NET framework.

 For example, the Toolkit API defines an attribute called ExtenderControl-
Property, which you can use to decorate a property of an Ajax-enabled control.
When the base class filters the properties that are decorated with this attribute, it
knows that those properties are mapped to properties of the client component
associated with the server control. The base class can use the value of the property
when, say, generating a script descriptor. In this way, you can collect all the infor-
mation you need without building script descriptors manually in a child class.
Table 10.2 lists the attributes defined by the Toolkit API, along with a brief expla-
nation of what they accomplish.
Table 10.2 Attributes defined in the Ajax Control Toolkit API

Attribute name
Entity

decorated
Description

Designer Class Specifies the type of the designer class associated
with an Ajax-enabled control.

ExtenderControlProperty Property Maps a server property to a property of the client
component.

ClientPropertyName Property Specifies the exact name of the client property
mapped to a server property.

ExtenderControlEvent Property The decorated property returns the name of a Java-
Script function that will handle the event specified in
the attribute.

ExtenderControlMethod Method The decorated method can be invoked from the cli-
ent side using ASP.NET 2.0 callbacks support.

ClientScriptResource Class Specifies the name of a script resource that con-
tains the JavaScript code for the client component.

ClientCssResource Class Specifies the name of a web resource that contains
a CSS file to load in the page.

RequiredScript Class Specifies the name of a script resource to load in
the page, or a type associated with multiple script
resources. The loadOrder parameter is an
integer used to define the loading order of script
resources in case multiple RequiredScript
attributes are used.

346 CHAPTER 10

Developing with the Ajax Control Toolkit
The Toolkit’s base classes can generate a single script descriptor and multiple
script references based on the attributes listed in table 10.2. Most of these
attributes are used to build the script descriptor, which is responsible for generat-
ing the $create statement that instantiates and configures the associated client
component in the page.

 The $create method, which we introduced in chapter 8, is a powerful method
that performs all the work related to component instantiation and configuration.
This task is accomplished based on the arguments you pass to $create. The
attributes defined by the Toolkit API can be seen as a way to build the parameters
passed to the $create method. Figure 10.7 helps to clarify this concept by show-
ing how some attributes can influence the generation of a $create statement.

 It’s time to switch from theory to practice and see some of these attributes in
action. You’ll leverage the Toolkit API to build a new extender. The TextChanged-
Extender will let you raise an event whenever the user stops typing in a text field
for a certain amount of time. In the next section, you’ll see why you would need
such a control and how to wrap it in a Toolkit extender.

RequiredProperty Property The decorated property must be assigned a value.

ElementReference Property The decorated property returns the client ID of a
DOM element in the page.

ComponentReference Property The decorated property returns the ID of a client
component in the page.

Table 10.2 Attributes defined in the Ajax Control Toolkit API (continued)

Attribute name
Entity

decorated
Description

$create(Samples.MyComponent, {}, {}, {}, $get('associatedElementID'));

[ExtenderControlEvent]

[ExtenderControlProperty]
[ElementReference]
[ClientPropertyName]

[ClientScriptResource]

[ComponentReference]
[ClientPropertyName]

Figure 10.7 Some of the attributes of the Toolkit API determine how a script descriptor
generates a $create statement.

The Ajax Control Toolkit API 347
10.2.3 Building Toolkit extenders: the TextChanged extender

The idea behind a control like the AutoCompleteExtender, which we discussed in
section 10.1.1, is to provide the user with real-time feedback. As the user enters
text in a text box, data is retrieved from the server and presented to them in a
pop-up displayed under the text file. Ajax makes it possible to implement this pat-
tern by sending asynchronous requests to the web server in the background.

 Many variations on the auto-complete pattern are possible. For example, you can
filter the content of a GridView in real time based on the filter expression the user
is typing. You can also perform a live search on the web page and highlight the
matching words as soon as the user types them. We presented an example of such
functionality in section 6.5, where you built the Live GridView Filter. Figure 10.8
shows this control.

 These controls need to capture the user input in real time and send an
asynchronous HTTP request to the server. If you don’t pay attention to how the

Figure 10.8 The Live GridView Filter that you built in chapter 6 is an example of a control that processes
user input in real time.

348 CHAPTER 10

Developing with the Ajax Control Toolkit
mechanism is implemented, you may experience a huge performance drop.
Imagine an Ajax request being sent to the web server each time you type a character
in a text box. Now, multiply by the number of users that might be using the real-time
filtering functionality at the same time. If the website generates a high volume of
traffic, the web server will be flooded with requests.

NOTE The auto-complete functionality provided by the Toolkit already uses this
mechanism, together with an internal cache, to limit the number of asyn-
chronous requests sent to the server.

To mitigate this issue, you’ll write a client component that programmatically fires
the change event of a text box element only after the user has stopped typing for
a certain—and configurable—amount of time. Chances are, the user then wants
the input to be processed, and you can safely issue the asynchronous request.
Let’s start by opening Visual Studio and creating a new Toolkit extender project.

Creating the extender project
The Ajax Control Toolkit ships with a Visual
Studio template for creating an extender
with the Toolkit API. You can select the tem-
plate, called ASP.NET AJAX Control Project,
when you add a new project to a Visual Stu-
dio solution. Figure 10.9 shows the structure
of a new extender control project called
TextChanged. This is the project you’ll use in
the example.

 The Visual Studio template creates
three files with the project name as a pre-
fix and the suffixes Behavior, Designer,
and Extender:

■ TextChangedBehavior.js—A JavaScript file that contains the code for the cli-
ent component. The commented skeleton code for a client behavior is
already declared in the file created by the template. This JavaScript file
must be compiled as a web resource; otherwise, it can’t be referenced by the
extender. You must ensure that, in the Properties panel, the Compilation
mode of the file is set to Embedded Resource.

Figure 10.9 Structure of the
TextChanged project created by the
Visual Studio template shipped with the
Ajax Control Toolkit

The Ajax Control Toolkit API 349
■ TextChangedExtender.cs—Contains the extender class, which derives from the
ExtenderControlBase class.

■ TextChangedDesigner.cs—Contains a class that can be used to enhance the
design-time experience in the Visual Studio designer. This class derives
from the base ExtenderControlBaseDesigner class. More information on
this class is provided in section 10.2.5.

Because part of the code is automatically generated by the template, and we want
to focus on the Toolkit API, we’ll illustrate only the relevant portions. The entire
example, with commented code, is available for download at http://www.man-
ning.com/gallo, as part of the code for chapter 10.

The TextChangedBehavior Class
The TextChangedBehavior class is the client behavior that enhances the text box
element. The class inherits from the AjaxControlToolkit.BehaviorBase class
and encapsulates all the JavaScript code needed to monitor the text typed in the
text field. The client behavior is responsible for raising the DOM change event of
the text box when a configurable timeout elapses. It also fires a textChanged
component event, which can be subscribed to on the client side using the tech-
niques introduced in section 3.7. Listing 10.6 shows the members of the class, as
declared in the TextChanged.TextChangedBehavior constructor.

TextChanged.TextChangedBehavior = function(element) {
 TextChanged.TextChangedBehavior.initializeBase(this, [element]);

 // TODO : (Step 1) Add your property variables here
 //
 this._text = '';
 this._timeout = 500;
 this._timer = null;
}

The first field, _text, holds the text typed by the user. The second field, _timeout,
stores the time interval to wait before firing the change and textChanged events.
The value of the _timeout field is exposed in a public property called timeout. The
last field, _timer, holds the opaque ID returned by the JavaScript’s setTimeout func-
tion. You’ll use the setTimeout function to simulate a timer.

Listing 10.6 Constructor of the TextChangedBehavior class

350 CHAPTER 10

Developing with the Ajax Control Toolkit
 The client component handles the keypress event—raised by the text box
whenever the user types a character—to start the timer. As soon as the user
presses a key, the timer is reset and restarted. This prevents the events from being
raised. If the timeout interval elapses before the user types another character, you
raise the change and textChanged events.

 The code in listing 10.7 shows how the timer is implemented using the setTim-
eout and clearTimeout functions provided by JavaScript. The _startTimer and
_stopTimer methods are embedded in the TextChangedBehavior’s prototype.

_startTimer : function() {
 this._timer = window.setTimeout(Function.createDelegate(this,
 this._onTimerTick), this._timeout);
},

_stopTimer : function() {
 if(this._timer != null) {
 window.clearTimeout(this._timer);
 }
 this._timer = null;
}

The setTimeout function invokes the _onTimerTick method as soon as the inter-
val specified in the _timeout variable elapses. The setTimeout function returns
an opaque ID that is stored in the _timer variable. If you pass the opaque ID to the
clearTimeout function, the timer is stopped.

 If the timeout value elapses before the timer is reset, the user has stopped typ-
ing for the desired amount of time. At this point, you can programmatically fire
the DOM change event on the text box element.

NOTE A DOM event fired programmatically is called a synthetic event.

Listing 10.8 shows the code needed to fire a DOM event programmatically with
JavaScript. In this case, you’re interested in raising the change event on the text
box element. Because the text box is the associated element of the client behav-
ior, you can retrieve a reference by calling the get_element method. Note that
the else branch in the if statement contains code specific for the Internet
Explorer browser.

Listing 10.7 Implementing a simple timer in JavaScript

The Ajax Control Toolkit API 351
_fireTextBoxChange : function() {
 if (document.createEvent) {
 var onchangeEvent = document.createEvent('HTMLEvents');
 onchangeEvent.initEvent('change', true, false);

 this.get_element().dispatchEvent(onchangeEvent);
 }
 else if(document.createEventObject) {
 this.get_element().fireEvent('onchange');
 }
}

The client logic encapsulated in the behavior is simple, but it’s helpful in case you
want to reduce the HTTP traffic generated by a control that processes the user
input in real time. The next step is to create an extender to wire this client func-
tionality to an ASP.NET TextBox control.

The TextChangedExtender class
The TextChangedExtender class is located in the TextChangedExtender.cs file
generated by the Visual Studio template. This class inherits from the Extender-
ControlBase class and is supposed to wire the client functionality provided by the
TextChangedBehavior component to an ASP.NET TextBox control. If you open
the TextChangedExtender.cs file, you’ll find the following statement just before
the class declaration:

[assembly: System.Web.UI.WebResource(
 ➥"TextChanged.TextChangedBehavior.js", "text/javascript")]

The WebResource attribute is used to register a file as a web resource embedded
in an assembly. A URL can be generated to reference the embedded resource in
an ASP.NET page. Through this URL, you can instruct ASP.NET to load the
resource in a web page through a HTTP handler.

NOTE To learn more about web resources, browse to the following URL: http://
support.microsoft.com/kb/910442/en-us.

The first argument passed to the WebResource attribute is the name of the web
resource. The second argument is the MIME type (the Internet Media Type) of
the web resource. In the example, you register the TextChangedBehavior.js file as
a JavaScript resource. The corresponding MIME type is text/javascript.

Listing 10.8 Firing a DOM event programmatically

http://support.microsoft.com/kb/910442/en-us
http://support.microsoft.com/kb/910442/en-us

352 CHAPTER 10

Developing with the Ajax Control Toolkit
 Let’s pass to the attributes that decorate the class. The TextChangedExtender
class is decorated with the following attributes:

[TargetControlType(typeof(Control))]
[Designer(typeof(TextChangedDesigner))]
[ClientScriptResource("TextChanged.TextChangedBehavior",
 "TextChanged.TextChangedBehavior.js")]

The first attribute, TargetControlType, restricts the use of the extender to a par-
ticular type of web control. We introduced this attribute in chapter 9, when we dis-
cussed the base framework for creating extenders. Here, you want to extend
ASP.NET TextBox controls. Therefore, you change the attribute as follows:

[TargetControlType(typeof(TextBox))]

Trying to extend a control other than a TextBox will result in an exception being
raised by ASP.NET. The subsequent attributes have been all introduced by the Tool-
kit API. A quick look at table 10.2 reveals that the Designer attribute specifies the
class you use to enhance the design-time experience of the TextChanged extender.
In the example, this class is called TextChangedDesigner, and it’s defined in the
TextChangedDesigner.cs file generated by the Visual Studio template.

 The ClientScriptResource attribute specifies which script file is loaded in the
page by the extender. The first argument passed to the attribute is the fully qualified
name of the client component. This information is needed by the ExtenderCon-
trolBase class to build the script descriptor for the client component used by the
extender. The second argument is the name of the web resource associated with the
JavaScript file. This is the same string you passed to the WebResource attribute.

Extender properties
As you know from chapter 9, an extender usually exposes properties that let you
configure the client component from the server side. These properties are
mapped to the corresponding properties of the client component, as shown in
table 10.3.

Table 10.3 Mappings between the properties of the
 TextChangedExtender class and the
 TextChangedBehavior class

Client property Extender property

timeout Timeout

textChanged (event) OnTextChanged

The Ajax Control Toolkit API 353
The first property, Timeout, lets you specify on the server side the value of the
timeout property exposed by the client behavior. The second property, OnText-
Changed, specifies a JavaScript function that handles the textChanged event. List-
ing 10.9 shows how these properties are declared in the TextChangedExtender
class.

[Designer(typeof(TextChangedDesigner))]
[ClientScriptResource("TextChanged.TextChangedBehavior",
 "TextChanged.TextChangedBehavior.js")]
[TargetControlType(typeof(Control))]
public class TextChangedExtender : ExtenderControlBase
{
 [ExtenderControlProperty]
 [DefaultValue(500)]
 [ClientPropertyName("timeout")]
 [RequiredProperty]
 public int Timeout
 {
 get { return GetPropertyValue<int>("Timeout", 500); }
 set { SetPropertyValue<int>("Timeout", value); }
 }

 [ExtenderControlEvent(true)]
 [DefaultValue("")]
 [ClientPropertyName("textChanged")]
 public string OnTextChanged
 {
 get { return GetPropertyValue<string>("OnTextChanged",
 String.Empty); }
 set { SetPropertyValue<string>("OnTextChanged", value); }
 }
}

The ExtenderControlProperty attribute tells the base class that the value of the
decorated property maps to a corresponding client property. The exact name of
the client property is specified in the ClientPropertyName attribute (note that you
remove the get_ prefix from the name of the client getter). If you omit the Cli-
entPropertyName attribute, the base class uses the name of the server property.

 The GetPropertyValue<> and SetPropertyValue<> methods are generic
methods for automatically storing and retrieving the value of a property from the
control’s ViewState. The first argument passed is the name of the ViewState field
in which the value is stored. The second argument is the value that is returned if
the ViewState’s field is set to null.

Listing 10.9 Complete code for the TextChangedExtender class

354 CHAPTER 10

Developing with the Ajax Control Toolkit
NOTE At the moment, the GetPropertyValue<> and SetPropertyValue<>
methods are available only in the ExtenderControlBase class.

The ExtenderControlEvent attribute tells the base class that you want to specify a
handler for an event raised by the client component. The name of the client event
is specified in the ClientPropertyName attribute. The name of the JavaScript func-
tion that handles the event is contained in the string returned by the property.

Testing the TextChanged extender
Once the TextChanged project is compiled, you can use the TextChangedEx-
tender like any other extender. Usually, an @Register directive is added at the top
of an ASP.NET page to specify the assembly and the namespace in which the
extender is contained, like so:

<%@Register Assembly="TextChanged" Namespace="TextChanged"
 TagPrefix="samples" %>

Listing 10.10 uses the TextChangedExtender control to refresh an UpdatePanel
control each time the user stops typing in the text field for one second.

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <div>Updated at: <%= DateTime.Now %></div>

 <asp:TextBox ID="TextBox1" runat="server"
 AutoPostBack="true" />

 <samples:TextChangedExtender ID="TextChangedExtender1"
 runat="server"
 TargetControlID="TextBox1"
 Timeout="1000"
 OnTextChanged="onTextChanged"
 />
 </ContentTemplate>

</asp:UpdatePanel>

<script type="text/javascript">
<!--
 function onTextChanged(sender, e) {
 Sys.Debug.trace('textChanged event handled');
 }
//-->
</script>

Listing 10.10 Example usage of the TextChangedExtender

The Ajax Control Toolkit API 355
As usual, the extender is wired to the extended TextBox by specifying the ID of
the extended control in the TargetControlID property. Note how you can use the
Timeout and the OnTextChanged properties to configure the timeout value and
the event handler for the textChanged event. The timeout property of the client
behavior instance is set to one second. The event handler for the textChanged
event is the onTextChanged function declared in the page. This function logs a
message in the browser’s console using the Sys.Debug.trace method, as shown
in figure 10.10.

In the code downloadable at http://www.manning.com/gallo, you’ll find
a modified version of the LiveGridViewFilter example, rewritten to take
advantage of the TextChangedExtender control.

To complete our tour of the Toolkit API, we’ll do a quick overview of how the
Toolkit enhances your design-time experience thanks to its support for the Visual
Studio Designer.

10.2.4 Support for Visual Studio Designer

All the Toolkit controls can have an associated class to enhance the design-time
experience provided by the Visual Studio Designer. The associated class must derive
from the ExtenderControlBaseDesigner class contained in the AjaxControlTool-
kit.Design namespace. The associated designer class is specified in the Designer
attribute, which decorates an extender or script control class. The argument passed
to the Designer attribute is the type of the designer class, as in the following code:

[Designer(typeof(myDesignerClass))]

LIVE
GRIDVIEW

FILTER

Figure 10.10
The TextChangedExtender
example running in Firefox.
The current date is updated
every time the change event
of the text box is fired.

http://www.manning.com

356 CHAPTER 10

Developing with the Ajax Control Toolkit
We need to discuss how the design-time experi-
ence can be enhanced for Ajax-enabled controls.
The majority of Ajax-enabled controls rely
heavily on JavaScript for rendering the control
layout at runtime. An example is the Calendar-
Extender control, which renders the calendar
entirely on the client side using dynamic DOM
elements. It’s difficult to get a design-time expe-
rience similar to that of the ASP.NET Calendar
control, which renders static HTML and can be
displayed in the Visual Studio Designer. Using
JavaScript lets you use the CalenderExtender
control to render a full-featured calendar with
support for animated transitions, similar to the one used in Windows Forms appli-
cations. Figure 10.11 shows a page that contains the CalendarExtender control.

 At the moment, the Toolkit offers basic design-time support that targets the con-
figuration of the extender’s properties. Fig-
ure 10.12 shows a portion of the Properties
panel in the Visual Studio Designer. In the
panel, you can see the properties of an
ASP.NET Panel control. Interestingly, you
can also edit the properties of all the extend-
ers associated with the Panel control. This is
reasonable because an extender, as the
name implies, is supposed to provide addi-
tional properties to the extended control. In
figure 10.12, the Panel has been extended
with a CollapsiblePanel extender, which lets
you dynamically show and hide the panel
with an animation effect. A new Extenders
category is added in the Properties panel.
Inside is the list of properties added by each
extender associated with the control.

 To provide additional design-time capa-
bilities, you have to work with the associated
designer class. A discussion of the Visual
Studio Designer API is beyond the scope of

Figure 10.11 The CalendarExtender
control provides a calendar rendered
using Dynamic HTML on the client
side.

Figure 10.12 Example of design-time
support offered by Toolkit extenders

http://msdn2.microsoft.com/en-us/library/37899azc.aspx

Animations 357
this book. You can find a good introduction to Visual Studio design-time capabili-
ties at http://msdn2.microsoft.com/en-us/library/37899azc.aspx.

 Our overview of the Ajax Control Toolkit API is complete. This API makes it
easier to create Ajax-enabled controls using an attribute-based programming
model. It also provides the possibility to enhance the features provided by the
base ASP.NET AJAX framework. As part of an open-source project, you can modify
or expand the API based on your needs.

 The Ajax Control Toolkit provides much more than the biggest available collec-
tion of Ajax-enabled controls and an API for creating them. You can leverage its pow-
erful framework to add animations and visual effects to a web page’s DOM elements.

10.3 Animations

The transition from static pages to Dynamic HTML pages opened the possibility of
creating more appealing UIs. Static links, images, and panels turned into floating
menus, slideshows, scrollers, and fading panels. Now, clever use of CSS and the
DOM is required to obtain a modern web UI that enhances the user experience.
Animations and visual effects are the key concepts you need to master. In the fol-
lowing sections, we’ll examine the framework for creating animations and visual
effects provided by the Ajax Control Toolkit.

10.3.1 Toolkit animation framework

The Toolkit animation framework consists of a group of client classes, each of
which describes a particular type of animation. These classes derive, directly or
indirectly, from a base class called Animation. Table 10.4 lists all the available ani-
mations along with their descriptions. As you can see, the list of animations is
exhaustive—it includes fading effects, and you can move, resize, and scale ele-
ments; animate colors; and manage multiple animations.

Table 10.4 Classes of the Toolkit’s animation framework

Name Description

FadeInAnimation Fade-in effect

FadeOutAnimation Fade-out effect

PulseAnimation Sequence of fade-in and fade-out effects

ColorAnimation Animated transition between two colors

LengthAnimation Animates the height or width style attributes of an element

http://msdn2.microsoft.com/en-us/library/37899azc.aspx

358 CHAPTER 10

Developing with the Ajax Control Toolkit
Animation classes are organized into families. Each family consists of a base class
from which the animation classes derive. Figure 10.13 shows the families that
make up the animation framework.

 In the Toolkit animation framework, you can create animations three different
ways:

■ Using the classic imperative syntax—You create an instance of the class with the
new operator and configure its properties as with any other client class.

■ Using JSON—You describe a group of animations using JSON objects.

■ Using XML—You define animations using XML syntax. This is the tech-
nique used by the AnimationExtender, which is an extender you can use
to create animations in a web page. We’ll discuss the AnimationExtender
in section 10.3.3.

MoveAnimation Animates the top and left style attributes of an element

ResizeAnimation Changes the size of an element

ScaleAnimation Scales an element, given a scale factor

SequenceAnimation Plays a group of animations sequentially

ParallelAnimation Plays a group of animations simultaneously

ConditionAnimation Plays one of two child animations based on a condition

CaseAnimation Plays one of the child animations based on a selection script

Table 10.4 Classes of the Toolkit’s animation framework (continued)

Name Description

FadeAnimation

SequenceAnimation

ParallelAnimation

InterpolatedAnimation

ParentAnimation

SelectionAnimation

Animation

Figure 10.13
Base classes for the animations defined
in the Toolkit animation framework

Animations 359
Using the imperative syntax is the fastest technique in terms of performance.
JSON and XML descriptions are translated into imperative code to instantiate the
corresponding animation classes. On the other hand, JSON and XML lead to com-
pact and high readable code; this becomes relevant especially when you have to
deal with many complex animations. The overhead introduced by JSON and XML
description becomes substantive only in the most complex scenarios.

 Because you know how to use the imperative syntax (assuming you’re familiar
with the JavaScript language), we’ll focus mainly on the XML and JSON syntax.
Before introducing them, let’s do an overview of the common properties and
methods exposed by the animation classes.

10.3.2 Animation basics

All the animations in the animation framework derive from a base client class
called Animation. This class is contained in the AjaxControlToolkit.Animation
namespace. It acts as an abstract class that provides the basic functionality needed
by every animation. Whenever you create an instance of an animation class, you
should set the following properties on it:

■ target—The client ID of the DOM element that will be animated.

■ duration—The overall duration of the animation, in seconds. The default
value is 1 second.

■ fps—The number of frames per seconds at which the animation is played.
The higher is the value, the smoother the animation. The default value is 25
frames per seconds.

Every animation class exposes methods for controlling the animation status. The
main methods are the following:

■ play—Starts an animation, and resumes a paused animation.

■ pause—Pauses an animation. If the play method is invoked after pause, the
animation continues to play from the point where it was paused.

■ stop—Stops an animation. If the play method is invoked after stop, the
animation is played from the beginning.

You can detect when an animation is played or stopped by handling one of the
events exposed by the base Animation class. These events can be handled with the
techniques explained in section 3.7. At present, the Animation class exposes the
following events:

360 CHAPTER 10

Developing with the Ajax Control Toolkit
■ started—Raised as soon as the play method is invoked on the animation
instance

■ ended—Raised when the stop method is invoked on the animation instance

This is all you need to know to start working with the animation framework. The
next step is to experiment with some of the animation classes provided by the
framework. To do this, we’ll introduce the animation extender, which is a Toolkit
extender that lets you define animations using a declarative XML syntax.

10.3.3 Using the AnimationExtender

The animation extender is a Toolkit extender that defines animations in a web
page based on an XML description. Being an extender, the AnimationExtender
must extend a server control declared in the page. The extended control—set, as
usual, through the TargetControlID property—is a control that triggers one or
multiple animations. For example, if you wire the AnimationExtender to a Button
control, you can play single or multiple animations based on the events raised by
the button element. Listing 10.11 shows the skeleton structure for the Animation-
Extender control.

<ajaxToolkit:AnimationExtender ID="AnimationExtender1" runat="server"
 TargetControlID="Button1">
 <Animations>
 <OnLoad></OnLoad>
 <OnClick></OnClick>
 <OnMouseOver></OnMouseOver>
 <OnMouseOut></OnMouseOut>
 <OnHoverOver></OnHoverOver>
 <OnHoverOut></OnHoverOut>
 </Animations>
</ajaxToolkit:AnimationExtender>

The child Animations element contains XML elements mapped to events raised by
the DOM element rendered by the extended control. Listing 10.11 assumes the
extender is wired to a Button control with the ID of Button1. The elements under
the Animations node represent events raised by the DOM button element. In the
elements, you specify which animations you want to play in response to the event.
For example, animations declared under the OnClick element are played as soon
as the element is clicked. The only exception is represented by the OnLoad element:

Listing 10.11 Skeleton of the animation extender

Animations 361
Animations defined under this element are played as soon as the browser has fin-
ished loading the web page.

 Let’s see how to define animations using XML syntax. Listing 10.12 shows how
you can fade out a div element by clicking a button. Note that the fade effect
starts when you click the button, which is the element rendered by the extended
Button control. The fade effect is applied to a different element, a div; this means
you can trigger the animations based on the button events, but the animations
can target any elements in the web page.

<div id="thePanel" style="background-color:#aaa">
 <h2>Click the button to dismiss me.</h2>
</div>

<asp:Button ID="Button1" runat="server" Text="Click Me"
 OnClientClick="return false"
 UseSubmitBehavior="false" />

<ajaxToolkit:AnimationExtender ID="AnimationExtender1"
 runat="server"
 TargetControlID="Button1">
 <Animations>
 <OnLoad>
 <Scale ScaleFactor="2" />
 </OnLoad>
 <OnClick>
 <Sequence>
 <EnableAction Enabled="false" />
 <FadeOut AnimationTarget="thePanel"
 MinimumOpacity="0"
 MaximumOpacity="1"
 Duration="0.5"
 />
 </Sequence>
 </OnClick>
 </Animations>
</ajaxToolkit:AnimationExtender>

In the OnLoad element is a Scale tag, which is parsed as an instance of the Scale-
Animation class. In general, you obtain the name of the tag to use in the XML
description by removing the suffix Animation from the class name. As usual,
attributes represent properties of the class. Because the value of the ScaleFactor

Listing 10.12 Animating a div element with the AnimationExtender control

362 CHAPTER 10

Developing with the Ajax Control Toolkit
attribute is set to 2, the button doubles its default dimensions. Note that because
you haven’t specified a duration, the button reaches its new dimensions in one
second, which is the default value.

 The OnClick element includes a sequence of animations to play as soon as the
button is clicked. To play multiple animations in response to an event, you must
encapsulate them into a Sequence or Parallel element. Otherwise, you can play
only a single animation. The Sequence element defines an animation of type
SequenceAnimation. This animation encapsulates a group of child animations
that are played sequentially, one after another, as shown in figure 10.14.

When the previous animation is completed, the next one is played. The start,
pause, and stop methods affect the entire sequence of animations. The Sequence-
Animation class also exposes an iterations property, which can be set to an integer
value. This value specifies the number of times the sequence is looped.

 As an alternative, you can play a group of animations simultaneously, without
waiting for the previous animation to complete before starting the next. In this
case, you must declare the child animations in a Parallel element, which repre-
sents an animation of type ParallelAnimation. Note that the duration and fps
properties affect the overall duration and smoothness of all the child animations.
If one of the child animations sets different values for these properties, they’re
ignored if the animation is played in parallel. The concept of parallel animation is
shown in figure 10.15.

0 1 2 3 4 5 6 7 8

Animation 2

Animation 1

Animation 3

Figure 10.14
A sequence animation is
used to play all the child
animations sequentially.

0 1 2 3 4 5 6 7 8
Animation 1

Animation 2

Animation 3

Figure 10.15
A parallel animation
is used to play all the
child animations
simultaneously.

Animations 363
In listing 10.12, the second animation in the Sequence element is a FadeOutAni-
mation, represented by the FadeOut tag. This kind of animation can fade out the
element whose client ID is set in the AnimationTarget attribute. In the example,
you fade out a panel represented by the div element with the ID thePanel. The
MinimumOpacity and MaximumOpacity attributes control the initial and final opac-
ity for the fade-out effect. In this case, you pass from a value of 1 to 0, so the element
is faded out until it disappears. The FadeIn element has the same attributes and
can be used to play a fade-in effect. Figure 10.16 shows the example in listing 10.12
running in Internet Explorer.

 The first animation in the Sequence element is neither a visual effect nor a real
animation. You can consider it an action. Actions are atomic animations. They don’t
need a duration and don’t need to be played at a certain frame-rate, because they
perform tasks such as disabling an element or hiding it. But defining actions as ani-
mations means you can use them in sequence or parallel animations to perform
atomic actions on DOM elements. Table 10.5 lists all the actions available in the ani-
mation framework, together with the description of what they accomplish.
Table 10.5 Actions available in the animation framework

Name Description

EnableAction Enables or disables a DOM element

HideAction Hides an element or makes it visible

StyleAction Sets the value of a CSS attribute of an element

OpacityAction Changes the transparency of an element

ScriptAction Evaluates a portion of JavaScript code

Figure 10.16
The AnimationExtender example
running in Internet Explorer

364 CHAPTER 10

Developing with the Ajax Control Toolkit
The Ajax Control Toolkit provides another extender to manage animations in a
web page. The UpdatePanelAnimation extender works in a manner similar to the
AnimationExtender, but it targets the UpdatePanel control and lets you play ani-
mations before and after a partial postback. Let’s see how you can use this
extender to implement a visual pattern known as the yellow spotlight.

10.3.4 The UpdatePanelAnimation extender

The UpdatePanelAnimation extender plays animations before and after a partial
update. This extender must target an UpdatePanel control declared in the page.
Animations are declared under the Animations node, in two elements called
OnUpdating and OnUpdated. The OnUpdating tag contains all the animations to
play before the partial postback begins, and the OnUpdated tag contains the ani-
mations to play after the content of the UpdatePanel has been refreshed.

 Listing 10.13 shows how to use this extender to implement a visual pattern
called the yellow spotlight. This effect notifies the user that a region of the page has
been updated by animating the background color of the panel from a yellow
color—or your preferred color—back to its original background color, in a short
time. The purpose of the short color burst is to capture the user’s attention on a
refreshed portion of the page.

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="Calendar1"
 EventName="SelectionChanged" />
 </Triggers>
 <ContentTemplate>
 <h3><%= Calendar1.SelectedDate.ToLongDateString() %></h3>
 </ContentTemplate>
</asp:UpdatePanel>
<asp:UpdatePanel ID="UpdatePanel2" runat="server">
 <ContentTemplate>
 <asp:Calendar ID="Calendar1" runat="server"></asp:Calendar>
 </ContentTemplate>
</asp:UpdatePanel>
 <ajaxToolkit:UpdatePanelAnimationExtender
 ID="UpdatPanelAnimationExtender1"
 runat="server"
 TargetControlID="UpdatePanel1">
 <Animations>
 <OnUpdated>
 <Color
 StartValue="#FFFF55"
 EndValue="#FFFFFF"

Listing 10.13 The yellow spotlight pattern applied to an UpdatePanel

Animations 365
 Property="style"
 PropertyKey="backgroundColor"
 Duration="1" />
 </OnUpdated>
 </Animations>
</ajaxToolkit:UpdatePanelAnimationExtender>

The first UpdatePanel control is the one associ-
ated with the UpdatePanelAnimation extender.
When the user selects a date in the Calendar
declared in the UpdatePanel2 control, the first
UpdatePanel is refreshed and the yellow spot-
light animation is played. The animation is
defined in the extender’s OnUpdated element,
in the Animations element. The effect is imple-
mented with a ColorAnimation instance. The
StartValue and EndValue attributes specify the
start and end color, expressed in hexadecimal
notation. The Property and PropertyKey

attributes reach the property that the animation
affects. In this case, you’re interested in animat-
ing the background color of the panel. You
must animate the backgroundColor property of
the style object encapsulated by the div ele-
ment rendered by the UpdatePanel control.
Figure 10.17 shows the example running in the
Opera browser.

 The extenders provided by the Ajax Control Toolkit, in conjunction with the ele-
gant XML syntax used to describe animations, make it easy to create complex effects
and to implement visual patterns like the yellow spotlight. In the next section, we’ll
look at another technique that uses JSON to instantiate animations. You’ll use this
technique to enhance the PhotoGallery control that you coded in section 8.4.5.

10.3.5 JSON and animations: adding transitions to the
PhotoGallery control

When you use the AnimationExtender or the UpdatePanelAnimationExtender,
the XML that defines the animations is parsed on the server side. The result is a
JSON-serialized object that is sent on the client side and used to create instances of

Figure 10.17 You can use the
UpdatePanelAnimation extender to
implement the yellow spotlight visual
pattern.

366 CHAPTER 10

Developing with the Ajax Control Toolkit
the animation classes. The following example will give you the opportunity to
experiment directly with the JSON syntax for creating animations.

 In this section, we’ll return on the PhotoGallery control built in section 8.4.5.
So far, you’ve created a client control to browse a set of images stored in the web-
site. Your next goal is to enhance the control by adding an animated transition
between the images. The transition you’ll build isn’t complex, but it’s effective, as
shown in figure 10.18. While the next image is being loaded, you partially fade-out
the current image; then, you resize it until it reaches the width and height of the
next image to display. Finally, the new image fades in and replaces the old image.

 Let’s start by opening the PhotoGallery.js file that contains the code for the Pho-
toGallery control. You have to modify the code so that when the next image is
loaded, a new method named _playTransition is called. This method is respon-
sible for playing the animated transition and then calling the _displayImage
method as soon as the transition is completed. First, you must rewrite the _onImage-
ElementLoaded method, declared in the PhotoGallery’s prototype, as follows:

_onImageElementLoaded : function() {
 this._playTransition();
}

Figure 10.18 Example of an animated transition applied to the PhotoGallery control.
The animations that make up the transition are defined through JSON objects.

Animations 367
Then, you must add a method called _playTransition to the constructor’s proto-
type. The code for the _playTransition method is shown in listing 10.14.

_playTransition : function() {
 var currentImageSize = {height: this._imageElement.height,
 width: this._imageElement.width};
 var nextImageSize = {height: this._imgPreload.height, width:
 this._imgPreload.width};

 var fadeIn = AjaxControlToolkit.Animation.createAnimation(
 {
 "AnimationName": "FadeIn",
 "AnimationTarget": this._imageElement.id,
 "Duration": 0.3,
 "MinimumOpacity": 0.2,
 "MaximumOpacity": 1
 }
);

 var sequence = AjaxControlToolkit.Animation.createAnimation(
 {
 "AnimationName": "Sequence",
 "AnimationTarget": this._imageElement.id,
 "AnimationChildren":
 [
 {
 "AnimationName": "FadeOut",
 "Duration": 0.3,
 "MaximumOpacity": 1,
 "MinimumOpacity": 0.2
 },

 {
 "AnimationName": "Resize",
 "Height": nextImageSize.height,
 "Width": currentImageSize.width
 },

 {
 "AnimationName": "Resize",
 "Height": nextImageSize.height,
 "Width": nextImageSize.width
 }
]
 }
);

Listing 10.14 Code for the _playTransition method

Fade-in
animationB

Sequence animation C

368 CHAPTER 10

Developing with the Ajax Control Toolkit
 sequence.add_ended(Function.createDelegate(this,
 onSequenceEnded));

 sequence.play();

 function onSequenceEnded() {
 this._displayImage();
 fadeIn.play();
 }
}

The first thing you do in the body of the method is save the height and width of
the currently displayed image and the next one in the list. You need these dimen-
sions in order to set up the animation that resizes the current image to the size of
the next one.

 The first animation you create is a fade-in B, stored in the fadeIn variable. The
animation is created with a call to the AjaxControlToolkit.Animation.create-
Animation method. This method accepts an object literal (a JSON object) and
instantiates the animations defined in the object. In the JSON object, the value of
the AnimationName attribute is the FadeIn string, which corresponds to a fade-in
animation. You follow the same rule used in the XML description. The name of an
animation is obtained by removing the Animation suffix from the name of the class.

 The second attribute, AnimationTarget, specifies which element to animate.
In this case, it’s the img element that displays the current image. The third
attribute, Duration, is the duration of the animation; the last two attributes define
the values of the maximum and minimum opacity. The fade-in effect is obtained
by animating the opacity value from 0.2 to 1.

 You use the same technique to create the sequence animation C that com-
pletes the transition. In this case, the AnimationChildren attribute holds an array
with the child animations. When the _playTransition method is called, the tran-
sition is played in two parts. First, the sequence animation is played. To detect its
end, you subscribe to its ended event. The event is handled by a function called
onSequenceEnded, declared in the _playTransition method. When the sequence
animation ends, the _displayImage method is called to replace the old photo
with the new one. Finally, the fade-in animation is played to complete the transi-
tion between the two images.

 The JSON description is compact and leads to highly readable code. The only
drawback of this approach is that it’s slower than the imperative syntax because an
additional step is required to translate the JSON description into an instance of

Subscribe to
ended event

Play
transition

Handle
ended event

Summary 369
the FadeInAnimation class. For this reason, the imperative syntax is preferable
when you need maximum performance. In most cases, though, you’ll be able to
use the shortest and most readable code.

10.4 Summary

In this chapter, we’ve explored the Ajax Control Toolkit, an open-source project
started by Microsoft in the early days of ASP.NET AJAX. The Toolkit, which is open
to contributions from the community, aims at becoming the biggest free collec-
tion of Ajax-enabled controls available.

 The Toolkit controls are built on top of a custom API that enhances the base
functionality provided by the ASP.NET AJAX extensions. The Toolkit API is a meta-
data-driven API: Ajax-enabled controls can be authored using attribute-based pro-
gramming. All controls created with the Toolkit API provide support for the
ASP.NET 2.0 callbacks framework and the Visual Studio Designer.

 The Ajax Control Toolkit offers also a powerful framework for creating visual
effects and animations. We explored the animation classes and explained how to
create them in a web page using the AnimationExtender control. You can create
animations using XML or JSON syntax, as we demonstrated by adding transition
effects to the PhotoGallery control developed in chapter 8.

 In the next chapter, we’ll look at the XML Script declarative language, which is
used to instantiate client components in a page using a declarative syntax.

Part 3

ASP.NET AJAX Futures

It’s been almost a year since the first official release of ASP.NET AJAX, and
plans for the next release are well under way. Currently, features for the next
release are available in a separate package called the ASP.NET Futures. In this
part of the book, we’ll cover some of these features. Chapter 11 is dedicated
to XML Script: a declarative language similar to the ASP.NET markup, which
is used to instantiate client components in the page. Chapter 12 covers the
drag-and-drop engine, which you can use to drag and drop DOM elements in
the page. By the end of these chapters, you’ll be ready to use the main fea-
tures that will be included in future releases of ASP.NET AJAX.

XML Script
In this chapter:
■ XML Script basics
■ Actions
■ Bindings
■ Transformers
373

374 CHAPTER 11

XML Script
XML Script is a declarative language for creating instances of JavaScript objects at
runtime, setting their properties, and specifying their behavior, using an XML-like
syntax similar to the ASP.NET markup code.

 In an HTML page, you can separate content (the markup code) from style by
embedding the style information in a CSS file. Similarly, in an ASP.NET page, you
usually define the page layout using declarative markup code in an ASPX page.
Then, you can use a separate code-behind file to specify the behavior of server
controls and how they’re wired together, using the classic imperative syntax. XML
Script lets you achieve this kind of separation and instantiate JavaScript compo-
nents using a declarative script language embedded in a web page.

 XML Script, like declarative languages, has a number of advantages over the
imperative syntax. Building designers for markup is easier than building them for
code. Great visual tools, like the Visual Studio Designer, take care of generating
markup code for you. If a client can parse declarative markup, you can make
server controls render the markup more easily than rendering imperative code.
In addition, declarative markup carries semantics. For example, an application
that parses a TextBox tag knows that it has to instantiate a text field, but it’s up to
the application to decide to instantiate a simple text field rather than a more com-
plex auto-complete text box—for example, based on browser capabilities. Finally,
declarative code can be more expressive and less verbose than imperative code.
Features like bindings help keep the values exposed by object properties synchro-
nized, without the need to deal with multiple event handlers.

 This chapter illustrates these aspects of XML Script, beginning with the basics
of the language and moving to advanced features like actions, bindings, and trans-
formers. Keep in mind that because they’re part of the ASP.NET Futures package,
the features illustrated in this chapter aren’t currently documented or supported
by Microsoft.

11.1 XML Script basics

Your first goal is learning how to write XML Script code and understanding how
it’s turned into instances of client objects at runtime. As we’ll explain in a
moment, writing XML Script code is similar to writing ASP.NET declarative code.
The main difference is that whereas you use ASP.NET markup to create instances
of server-side classes, you use XML Script code to create JavaScript objects.

 Before you begin using XML Script, you need to enable it in a web page. This
turns out to be an easy job, because you have to reference the PreviewScript.js file
in the ScriptManager control, as shown in listing 11.1. This file is embedded as a

XML Script basics 375
web resource in the Microsoft.Web.Preview assembly, which is shipped with the
ASP.NET Futures package. You can find more information on how to install this
package in appendix A.

<asp:ScriptManager ID="TheScriptManager" runat="server">
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview"
 Name="PreviewScript.js" />
 </Scripts>
</asp:ScriptManager>

XML Script code is embedded in script tags with the type attribute set to text/
xml-script. This custom type was defined to distinguish blocks of XML Script
code from other script code such as JavaScript. This is what the typical container
of an XML Script code block looks like:

<script type="text/xml-script">
 <!-- Insert xml-script here -->
</script>

As you can see, XML Script comments have the same syntax as XML comments.
You can have multiple blocks of XML Script code in the same page, and they can
appear in any order and position. Unlike JavaScript code, though, at the moment
XML Script can only appear inline in the page and can’t be saved to separate files.

 As with any programming language, a “Hello, World!” example is the ideal
ice-breaker for introducing basic XML Script features. It’s also a good starting
point for learning how XML Script code is structured and to give you confidence
with its syntax.

11.1.1 Hello XML Script!

This example shows how a block of XML Script code is structured and how you
can deal with client objects using declarative code. You’ll see how to handle an
event raised by a client component using XML Script code. Normally, you’d
accomplish this task by retrieving a reference to the component and writing the
necessary JavaScript code to add an event handler. Listing 11.2 shows how to
declaratively hook up the init event raised by Sys.Application, the Application
object introduced in chapter 2. As promised, the event handler is a JavaScript
function that displays a “Hello XML Script!” message onscreen.

Listing 11.1 Enabling XML Script in an ASP.NET page

376 CHAPTER 11

XML Script
<%@ Page %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Hello XML-script</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="TheScriptManager" runat="server">
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview"
 Name="PreviewScript.js" />
 </Scripts>
 </asp:ScriptManager>

 <script type="text/xml-script">
 <page xmlns="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <application init="pageInit" />
 </components>
 </page>
 </script>

 <script type="text/javascript">
 <!--
 function pageInit() {
 alert("Hello XML Script!");
 }
 //-->
 </script>
 </form>
</body>
</html>

Let’s have a closer look at the block of XML Script code B contained in the page.
It has a root element called page and a single child element called components.
The page element defines a global XML namespace associated with the following
Uniform Resource Identifier (URI):

http://schemas.microsoft.com/xml-script/2005

The page/components structure is the basic form of an XML Script code block. All
the blocks of XML Script code in the page must have this structure in order to be

Listing 11.2 Code for the “Hello XML Script!” example

Block of XML
Script code

B

XML Script basics 377
parsed correctly. In section 11.1.5 we’ll return to the use of XML namespaces with
XML Script.

NOTE An XML namespace is a collection of names, identified by a URI reference,
used in XML documents as element types and attribute names. For more
information on XML namespaces, check http://www.w3schools .com/
xml/xml_namespaces.asp.

The components tag always contains the list of client objects declared in the page.
These objects are represented by XML elements and are instances of classes cre-
ated with the Microsoft Ajax Library. In this chapter, we’ll focus on client compo-
nents, which are classes that derive from Sys.Component. The reason is that the
XML Script engine already knows how to properly parse and instantiate such
classes. If you recall, the creation process for a client component is rather elabo-
rate, as we discussed in chapter 8.

 In listing 11.2, application is the unique child node of components. In XML
Script—as in the ASP.NET markup, for example—a tag is mapped to a class, and the
element represents an instance of that class. The application tag is always mapped
to the Application object, stored in the global Sys.Application variable. When the
XML Script parser processes the application tag, it retrieves a reference to the
Application object. Then, it recognizes the init attribute as the name of an event
raised by the Application object. As a consequence, its value—pageInit—is treated
as the name of the event handler.

 The pageInit function declared in the JavaScript code block at the bottom of
the page is invoked when the Application object raises the init event. This causes
the greeting message to be displayed in a message box onscreen, as shown in fig-
ure 11.1.

Figure 11.1
The message displayed by a JavaScript
function that handles the init event
raised by Sys.Application. The
init event is hooked up declaratively
using XML Script code.

http://www.w3schools.com/xml/xml_namespaces.asp
http://www.w3schools.com/xml/xml_namespaces.asp

378 CHAPTER 11

XML Script
The page still includes some JavaScript code, but you were able to perform the
logic for attaching the event handler using only declarative code. Later, you’ll see
how to make the JavaScript code disappear.

 So far, you know how to access the Application object using XML Script. Usu-
ally, a rich web application hosts multiple components and even controls associ-
ated with DOM elements. Can you access them in declarative code and hook up
their events? The answer is that all the kinds of client components can be instanti-
ated and accessed using XML Script.

NOTE As you may have noticed while typing the first listing in Visual Studio,
code completion isn’t available at the moment for XML Script. In addi-
tion, no support is provided for debugging XML Script code and for the
Visual Studio Designer. As we said in the introduction, XML Script is part
of the ASP.NET Futures package and is still under development.

11.1.2 Controls and XML Script

In chapter 8, we introduced client controls and promised that they would be useful
when dealing with XML Script. Client controls, when created as element wrappers, are
the way to reach DOM elements using XML Script. An element wrapper is a control
associated with a DOM element. As a wrapper, the client control exposes properties,
methods, and events to deal with the associated element and enhance its function-
ality. As a client component, a control can be used in XML Script with little effort.
The Microsoft Ajax Library ships with a collection of ready-to-use controls associ-
ated with the most-used DOM elements, such as labels and input elements.

 Listing 11.3 is a slight variation on listing 11.2. It uses a button and a label to
display the greeting message, instead of accessing the Application object.

<div>
 <input type="button" id="greetButton" value="Click Me" />
</div>
<div>
 <h1></h1>
</div>

<script type="text/xml-script">
 <page xmlns="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <label id="msgLabel" />
 <button id="greetButton" click="onGreetButtonClick" />
 </components>
 </page>
</script>

Listing 11.3 Using the Label and Button controls in XML Script

Button
element

B

Label
element

C

Label
component D

Button
component E

XML Script basics 379
<script type="text/javascript">
<!--
 function onGreetButtonClick(sender, e) {
 $find('msgLabel').set_text('Hello XML-script!');
 }
//-->
</script>

The page’s HTML contains an input B and a span C element. The goal is to dis-
play a message in the label when the button is clicked. To accomplish this task,
you don’t access the DOM elements directly. Instead, you deal with the corre-
sponding controls, represented by the label D and button E elements in the
XML Script code. Note that the value of their id attributes is set to the IDs of the
DOM elements; this way, you associate the DOM elements with the client controls.
We say that the DOM elements have been upgraded to client controls.

 At runtime, the XML Script engine creates an instance of the Sys.Pre-
view.UI.Label control and passes the span element as the associated element.
Similarly, it creates an instance of the Sys.Preview.UI.Button control and passes
the input element as the associated element. The value of the id attribute
becomes the value of the id property exposed by the controls. This allows them to
be referenced in XML Script code.

 The click attribute of the button tag E is mapped to the click event raised
by the Button control. Its value is the name of the JavaScript function that handles
the event. The function onGreetButtonClick uses the $find method to access
the Label control and set the text of the associated span element through the
set_text method.

 Table 11.1 lists the element wrappers defined in the Sys.Preview.UI
namespace. Note that you obtain the name of the associated tag—which is case
insensitive—by removing the namespace prefix from the class name.

Table 11.1 Element wrappers defined in the Sys.Preview.UI namespace

Class name Description Tag name

Sys.Preview.UI.Button Wraps an input element of type button button

Sys.Preview.UI.Label Wraps a span element label

Sys.Preview.UI.CheckBox Wraps an input element of type checkbox checkbox

Sys.Preview.UI.HyperLink Wraps an anchor element hyperlink

380 CHAPTER 11

XML Script
What if you need to target an element like div, which doesn’t have an associated
wrapper control? You have to write an XML Script-enabled custom control that
wraps it. But if you only need to wrap an element and access the base functionality
provided by the Sys.UI.Control class, the easiest way is to use a control element.
The control tag wraps a DOM element with a given id, with an instance of the
Sys.UI.Control class, like so:

<control id="elementID" />

In XML Script, the markup code is always mapped to the properties of controls,
not to the properties of the associated DOM elements. You need client compo-
nents to interact with DOM elements using declarative code.

 So far, we’ve talked about the components shipped with the Microsoft Ajax
Library. You’ll probably want to use custom components in XML Script. In the fol-
lowing section, you’ll see how XML namespaces help the XML Script engine locate
custom client classes.

XML namespaces
An XML namespace declaration tells XML Script where to find the client class corre-
sponding to an element declared in the markup code. In XML Script, you usually
declare a global namespace in the page element, with the following code:

<page xmlns="http://schemas.microsoft.com/xml-script/2005" />

When you declare the global namespace, the XML Script parser tries to map a tag
name to a client class contained in one of the following namespaces:

■ Sys

■ Sys.Net

■ Sys.Preview.UI

■ Sys.Preview.Data

■ Sys.Preview.Services.Components

■ Sys.UI

Sys.Preview.UI.Image Wraps an img element image

Sys.Preview.UI.Selector Wraps a select element selector

Sys.Preview.UI.TextBox Wraps an input element of type text textbox

Table 11.1 Element wrappers defined in the Sys.Preview.UI namespace (continued)

Class name Description Tag name

XML Script basics 381
■ Sys.Preview

■ Sys.Preview.Net

■ Sys.Preview.UI.Data

■ Sys.Preview.UI.Effects

If you want to use, in XML Script, a component defined in a different namespace,
you have to declare an XML namespace that tells where to find it.

 In general, you declare an XML namespace by associating a URI with a prefix.
The URI identifies the location of a certain resource, which isn’t necessarily asso-
ciated with a browsable address: It acts as a unique identifier. The prefix is used as
a shortcut that refers to the URI. For example, suppose you have a custom compo-
nent declared as SomeSpace.SomeComponent. Because SomeSpace is a custom
namespace, you have to declare an XML namespace if you want to use the compo-
nent in XML Script. To do that, you have to act on the page element as follows:

<page xmlns="http://schemas.microsoft.com/xml-script/2005"
 xmlns:cc="javascript:SomeSpace" />

You declare an XML namespace with an xmlns attribute followed by a colon and
the prefix that you’ll use in the XML Script code. The value of the xmlns attribute
is the URI (javascript:SomeSpace in the example). The string javascript: at the
beginning of the URI is called the scheme, which is required in order to obtain a
valid URI. In this case, the scheme suggests that what follows is a list of one or
more client namespaces, separated by commas. You can associate multiple client
namespaces with a single prefix, like so:

<page xmlns="http://schemas.microsoft.com/xml-script/2005"
 xmlns:cc="javascript:SomeSpace, SomeSpace.ChildSpace">

This code tells the XML Script parser which namespaces to search for the class
corresponding to an element declared with the cc prefix. The prefix should be a
short and, if possible, meaningful string. In this case, cc stands for custom control.
Assuming it exposes a proper type descriptor, you can use the custom component
in XML Script as follows:

<cc:SomeComponent />

As explained in the previous section, the type descriptor maps an element’s
attributes to properties of the component. The rules for writing XML Script code
apply to custom components.

 You may have noticed that the global namespace doesn’t have a prefix. Elements
without a prefix belong to the global namespace. Under the hood, the global XML

382 CHAPTER 11

XML Script
namespace is associated with the script prefix; so, this prefix refers to the
namespaces listed earlier.

 Before you learn how to use the custom classes in XML Script, you should
understand how XML Script code is parsed and turned into JavaScript code. This
will give you some insight into how things work under the hood of the XML Script
engine. Then, you’ll be ready to explore some of the powerful features of the
declarative language.

11.1.3 From XML Script to JavaScript

The process of converting the XML Script declarative code into JavaScript impera-
tive code starts when a web page is loaded in the browser. If XML Script is enabled
in the page, the Microsoft Ajax runtime instructs the XML Script parser to filter all
the script tags with the type attribute set to text/xml-script. The XML Script
parser is a JavaScript object stored in the Sys.Preview.MarkupParser variable. It
exposes a group of methods for extracting and processing the XML Script code.

 As the XML Script blocks are extracted, they’re collected in an array and pro-
cessed sequentially. For each block, a sanity check is performed on its structure,
to ensure that a root element called page exists. Also, the page element must
have a child node called components. The parser ignores all the other tags in the
page element.

NOTE The parser performs an additional check to see if a references element
is declared in the page node. The references element was used in previ-
ous CTPs to provide a list of paths to script files to load in the page, but
it’s not supported in the latest CTP. If a references tag is found, the
XML Script parser throws an error.

As the current XML Script block is processed, all the child elements of the compo-
nents tag are extracted and stored in an array. These are all the client objects that
need to be instantiated. The instantiation process is performed by the parseNode
method, which is called by the parser on each tag to parse the markup code and
create an instance of the object.

 First, the parseNode method needs to determine the fully qualified name of the
class to instantiate. To locate the class, it extracts the tag name and the namespace
prefix from the markup code. The tag name is the case-insensitive name of the class;
it’s turned to uppercase. The information on the namespace is retrieved from the
XML namespace prefix used in the tag. Finally, the fully qualified name of the class
is obtained by appending the class name to its containing namespace.

XML Script basics 383
If the class exists, the parser checks whether it exposes a static method called
parseFromMarkup. This method must be defined in a class in order to be used in
XML Script. It receives the markup code and is responsible for parsing it and cre-
ating a new instance of the class. This process is repeated for each XML Script
block and for each tag extracted from the components node. When all the
markup has been processed, all the client objects have been instantiated and can
be safely accessed in the application code. This process is illustrated in figure 11.2.

 Luckily, you can avoid writing the logic needed to parse the markup code and
create an instance of a client class. The Sys.Component class exposes and imple-
ments the parseFromMarkup method; it’s a good choice to derive the custom
classes from the base Sys.Component class. This way, you can take advantage of the
features offered by the client component model and also use the custom class in
XML Script with little effort. The only requirement is that every component must
expose a type descriptor in order to be used in XML Script.

11.1.4 Type descriptors

A type descriptor is an object that provides information about a particular type. In
the .NET framework, you can perform reflection on objects to learn about their
structure. For example, you can extract every sort of information about the fields,
properties, methods, and events exposed by a class. On the server side, type
descriptors can be used to provide additional reflection capabilities. On the client
side, type descriptors have been introduced to achieve the same goal.

text/xml-script

text/xml-script

<button />

<label />

<textbox />

<control />

new Button();

new Label();

new TextBox();

new Control();

Figure 11.2 The XML Script parser extracts component declarations from XML
Script code blocks. Then, it parses the declarative code and creates instances of
the corresponding JavaScript objects.

384 CHAPTER 11

XML Script
 In chapter 3, we introduced the enhanced type system provided by the
Microsoft Ajax Library, together with the methods used to reflect on client classes.
Reflection on client objects is less powerful because many object-oriented con-
structs are simulated by extending function objects. You can use client type descrip-
tors to partially fill this gap and provide information about the properties,
methods, and events defined in a client class.

NOTE In the .NET framework, type descriptors are used to enhance reflection
capabilities, especially for components that take advantage of the Visual
Studio Designer. For more information on .NET type descriptors, browse
to http://msdn2.microsoft.com/en-us/library/ms171819.aspx.

A client class can expose a type descriptor by storing it in a static descriptor
property added directly to the constructor. For example, you would store and
retrieve the type descriptor of a class called SomeSpace.SomeClass with the follow-
ing statements:

SomeSpace.SomeClass.descriptor = {};

var descriptor = SomeSpace.SomeClass.descriptor;

Another way to expose a type descriptor is by implementing the Sys.Preview.ITy-
peDescriptorProvider interface. This interface defines a single method called
getDescriptor, which must be implemented as an instance method of the client
class. The implementation of the method should return the type descriptor associ-
ated with the client class, as in the following code:

SomeSpace.SomeClass.prototype.getDescriptor = function() {
 return {};
}

Client type descriptors aren’t strictly tied to XML Script and can be leveraged by
every client class. But the XML Script engine needs a type descriptor in order to
parse the markup code into an instance of a client component, so only client com-
ponents that provide a type descriptor can be used in XML Script code.

Structure of a type descriptor
In the previous code snippets, you returned {}—an empty object—as the type
descriptor. The information should be packaged following specific rules that we’ll
explain in a moment. In general, a client type descriptor is a JavaScript object that
can provide custom information about the client type. The XML Script engine
recognizes the following properties:

http://msdn2.microsoft.com/en-us/library/ms171819.aspx
http://msdn2.microsoft.com/en-us/library/ms171819.aspx

XML Script basics 385
■ properties—Holds an array of property descriptors

■ methods—Holds an array of method descriptors

■ events—Holds an array of event descriptors

Each array, in turn, holds objects, each of which describes a property, a method,
or an event exposed by the client class. To help you understand what a type
descriptor looks like, listing 11.4 shows the one exposed by the Sys.Pre-
view.UI.Button class.

Sys.Preview.UI.Button.descriptor = {
 properties: [{ name: 'command', type: String },
 { name: 'argument', type: String }],
 events: [{ name: 'click' }]
}

The type descriptor of the Button class exposes two property descriptors and one
event descriptor. The first property is called command, and the corresponding
property descriptor is an object with two properties: name and type. The name
property returns a string with the name of the property you’re describing. The
type property returns the type of the value exposed by the property. Here’s the
property descriptor extracted from the type descriptor:

{ name: 'command', type: String }

Similarly, the second property descriptor tells you that the Button class exposes a
property called argument, of type String. We’re talking about client properties as
defined by the Microsoft Ajax Library, which we discussed in chapter 3. The
unique event descriptor in listing 11.4 is relative to a click event. It’s an object
with a name property that returns a string with the name of the event:

{ name: 'click' }

The Button class doesn’t provide any method descriptors. Describing a method
requires additional work because you also have to describe its parameters. Fig-
ure 11.3 shows a method descriptor extracted from the type descriptor exposed
by the Sys.Preview.InvokeMethodAction class. The method is called invoke,
and it accepts a single parameter called userContext, of type Object. You’ll
encounter this method again when we talk about actions in section 11.2.

Listing 11.4 Type descriptor exposed by the Sys.Preview.UI.Button class

386 CHAPTER 11

XML Script
In general, a method descriptor is an object with two properties, name and params.
The name property returns a string with the name of the method. The params
property returns an array of parameter descriptors. A list of the properties that
can be used in a parameter descriptor can be found in chapter 13, where we
explain the parameter-validation mechanism. Method parameters are described
in the same way in type descriptors and in validation routines.

 Thanks to type descriptors, the XML Script engine can discover which mem-
bers are exposed by a client class and map them to attributes declared in the
markup code. For example, by querying the type descriptor of the Button class,
the XML Script parser knows that the value of the click attribute of a button tag
should be treated as an event handler for the click event exposed by the class. By
iterating the same processing to all the elements, the XML Script code can easily
be converted into JavaScript code.

 So far, we have presented the syntax and the main rules to write XML Script
code. You also possess the skills to enable XML Script usage in the custom compo-
nents. This is the right moment to examine the main features of the language.
You must understand concepts like actions, bindings, and transformers to run
complex client code without writing a single line of JavaScript.

11.2 Actions

In the previous examples, you saw how to hook up an event raised by a client com-
ponent using XML Script code. Things went smoothly, and you didn’t have to
write any client code to attach the handler to the event. But you did have to

methods:
 [
 {name: 'invoke', params: [{name: 'userContext', type: Object}] }
]

Array of parameter descriptors
invoke() descriptor

Array of
method descriptors

userContext descriptor

Figure 11.3 A type descriptor can have a methods property that returns an array of method
descriptors. Each descriptor provides information about a particular method exposed by a class.
The diagram illustrates the method descriptor relative to a method named invoke. The method
accepts a single userContext argument, which is described with a parameter descriptor.

Actions 387
declare the function that handles the event, so some JavaScript code is still
present in the page. Our main goal was to demonstrate that XML Script can effec-
tively replace JavaScript code in many situations. Now we’re ready to introduce
actions, which are classes that encapsulate portions of JavaScript code. This code
can be executed in response to events raised by client components. Actions are
perfectly suited for handling events declaratively.

 As usual, examples will help to clarify this concept. Let’s start with an overview
of the built-in actions in the Microsoft Ajax Library. Later, you’ll create custom
actions and use them in XML Script.

11.2.1 SetPropertyAction

A typical task performed when handling an event is to set one or more properties
of an object. For example, you can intercept the click event of a button object and
display some text in a label. To do the same thing using declarative code, you need
the help of the SetProperty action. The SetPropertyAction class encapsulates the
client code needed to set the value of a property exposed by a client object. Like all
actions, this class can be used in XML Script. The code in listing 11.5 handles the
click event of a button with the SetProperty action, in order to display a greeting
message in a label.

<div><input type="button" id="greetButton" value="Click Me" /></div>
<div><h1></h1></div>

<script type="text/xml-script">
 <page xmlns="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <label id="msgLabel" />
 <button id="greetButton">
 <click>
 <setPropertyAction target="msgLabel"
 property="text"
 value="Hello XML-script!"
 />

 </click>
 </button>
 </components>
 </page>
</script>

Listing 11.5 Using the SetProperty action to handle an event

388 CHAPTER 11

XML Script
To handle an event with XML Script, you have to do two things: First you turn the
name of the event into an XML element; then, you declare one or more actions in
the event element. The code encapsulated by each action is executed in response
to the event.

 The code has a click element in the button tag. This element represents the
click event raised by the Button control. In the click element, you declare a
setPropertyAction element, which represents a SetProperty action. The tar-
get attribute specifies the ID of the client component that exposes the property
you want to set. The property attribute holds the name of the property you’re
interested in. The value attribute is set to the value you want to assign to the
property. As a consequence, the text “Hello XML-script!” is displayed in the label.

 With the SetProperty action, you can also access the properties of the DOM
element associated with a control. Add the following markup in the click node in
listing 11.5, just after the first setPropertyAction tag:

<setPropertyAction target="msgLabel"
 property="element"
 propertyKey="style.backgroundColor"
 value="#FFFF00" />

In this case, you have an additiona propertyKey attribute that contains the path
to the backgroundColor property of the span element associated with the msgLa-
bel control. Let’s compare the markup code with the equivalent imperative code:

$find('msgLabel').get_element().style.backgroundColor = '#FFFF00';

The property attribute, in this case,
refers to the get_element method, which
returns the associated DOM element. The
value of the propertyKey attribute is
appended to the object returned by
get_element, and the result is the prop-
erty to set. This causes the background
color of the span element to become yel-
low. Figure 11.4 shows the example in list-
ing 11.5 running in Firefox.

 Did you see any JavaScript code in list-
ing 11.5? With actions, you can wrap any
kind of JavaScript code and execute it

Figure 11.4 The SetProperty action
lets you set properties of client components
without writing a single line of JavaScript code.

Actions 389
declaratively. The next built-in action we’ll examine is PostBack; it’s used to trig-
ger a postback of the page.

11.2.2 PostBackAction

ASP.NET pages use a JavaScript function called __doPostBack to post form data
back to the server. The PostBack action wraps the call to __doPostBack to trigger
the postback of the page from XML Script code. Let’s change the behavior of the
button declared in listing 11.5. If you replace the button tag with the following
code, you can make it trigger a postback when it’s clicked:

<button id="greetButton">
 <click>
 <postBackAction target="myButton" eventArgument="" />
 </click>
</button>

The target and eventArgument attributes set the corresponding arguments in
the __doPostBack function. The previous markup code executes the following
JavaScript code:

__doPostBack('greetButton', '');

Another typical task performed by event handlers is invoking an object method.
The Microsoft Ajax Library provides the InvokeMethod action to invoke a method
declaratively in XML Script.

11.2.3 InvokeMethodAction

The InvokeMethod action is powerful because it invokes a method exposed by a
client component and makes it possible to process the results using only declara-
tive code. To demonstrate the InvokeMethod action, we’ll introduce a built-in cli-
ent component called Sys.Preview.Net.ServiceMethodRequest. You can use
this class to invoke a web method and process the results in a callback function.
To add some spice, you do so using only XML Script code. In listing 11.6, you
declare the Web Service used in the example. The only web method, GetTimeAs-
String, returns the current date and time on the web server. In the example, you
retrieve this information and display it in a label.

<%@ WebService Language="C#" Class="DateTimeService" %>

using System;
using System.Web;
using System.Web.Services;

Listing 11.6 Code for the DateTimeService class

390 CHAPTER 11

XML Script
using System.Web.Services.Protocols;
using Microsoft.Web.Script.Services;

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[ScriptService]
public class DateTimeService : System.Web.Services.WebService {

 [WebMethod]
 [ScriptMethod(UseHttpGet=true)]
 public string GetTimeAsString() {
 return DateTime.Now.ToShortTimeString();
 }
}

The DateTimeService class represents an ASP.NET web service configured for
ASP.NET AJAX. As usual, the class is decorated with the ScriptService attribute,
which instructs ASP.NET AJAX to generate a JavaScript proxy for the web service.
The GetTimeAsString web method returns a string with the current date and
time. The ScriptMethod attribute that decorates the web method is used to
change the way it’s invoked. Because the ServiceMethodRequest class uses GET as
the default HTTP verb for making the request, you set the UseHttpGet parameter
to true in the ScriptMethod attribute. You can find all the information needed
to access Web Services with ASP.NET AJAX in chapter 5.

 The Web Service is configured, so we can move on to the XML Script code.
Listing 11.7 shows how to make a declarative call to the web method defined in
the Web Service and access the returned string.

<h2>
 Time on Web Server:
 <asp:Label ID="DateTime" runat="server"></asp:Label>
</h2>

<script type="text/xml-script">
 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">
 <components>

 <label id="DateTime" />

 <serviceMethodRequest id="timeServiceMethod"
 url="DateTimeService.asmx"
 methodName="GetTimeAsString">

Listing 11.7 Making a declarative Web Service call

Label
control

B

ServiceMethod-
Request component

C

Actions 391
 <completed>
 <setPropertyAction target="DateTime"
 property="text"
 >
 <bindings>
 <binding dataContext="timeServiceMethod"
 dataPath="result"
 property="value"
 />
 </bindings>
 </setPropertyAction>
 </completed>
 </serviceMethodRequest>

 <application>
 <load>
 <invokeMethodAction target="timeServiceMethod"
 method="invoke" />
 </load>
 </application>

 </components>
 </page>
</script>

The HTML markup contains a span element associated with a Label control B.
You use the label to display the string returned by the web method. The service-
MethodRequest element is used to set up the call to the web method C. The url
attribute contains the path to the ASP.NET web service, and the methodName
attribute specifies the name of the web method to invoke. The string returned by
the web method is stored in the ServiceMethodRequest instance. You need to
assign it an id in order to be able to access the instance in XML Script.

 The ServiceMethodRequest class raises a completed event when the result of
the web method call is available. This is a good occasion to handle the event declar-
atively D and access the result property, which stores the returned string. You use
a SetProperty action and a new tag (a binding) to extract the value of the result
property and display it in the label. We’ll introduce bindings in section 12.3. For
now, it’s enough to say that a binding can be used to synchronize the value exposed
by two properties. In this case, you’re synchronizing the result property with the
label’s text property. As soon as the result property is set, the same happens with
the text property.

 The InvokeMethod action E, which is the action you’re interested in, is used
to handle the load event of Sys.Application. As soon as the load event is raised,

Handle
completed event

D

Call invoke
method

E

392 CHAPTER 11

XML Script
the InvokeMethod action calls the invoke method on the ServiceMethodRequest
instance E. Note that the instance can be referenced because you assigned it an
id. Figure 11.5 shows the date string displayed in the label.

 The built-in actions provided by the Microsoft Ajax Library enable you to per-
form the most common tasks in declarative event handlers. But the real fun
begins when you encapsulate the JavaScript code in custom actions. This can dra-
matically decrease the amount of JavaScript code you write, while expanding the
number of tasks that can be accomplished with XML Script code. Before we dis-
cuss the base classes for creating custom actions, we need to talk briefly about how
to set complex properties using the XML Script syntax.

Complex properties
Suppose you have a client component that exposes a property whose value is a
simple JavaScript object (represented by an object literal) or an array. A good
question would be whether you can expand the simple object or add elements to
the array declaratively, using XML Script. The answer is positive.

 Consider the example of a declarative web service call, from listing 11.7. You
know the ServiceMethodRequest class can be used to call a method defined in a
Web Service and process its results. It’s a client component, and it exposes a type
descriptor. As a consequence, you can use the class in XML Script. But what hap-
pens if the web method that you want to invoke accepts parameters? How can you
pass them using XML Script code?

 If you look at the type descriptor exposed by the ServiceMethodRequest class,
you’ll see that the class has a property called parameters, which is of type Object.
Here’s the property descriptor we’re talking about:

{name: 'parameters', type: Object, readOnly: true}

Figure 11.5 Result of the example in listing 11.7. The InvokeMethod
action invokes a method on a client object that, in turn, calls a method
defined in a local Web Service.

Actions 393
The property is marked read-only because it returns a reference to a simple object
that you can further expand. Whenever you add a property to this object, you add
a parameter that will be passed to the web method. The name of the property rep-
resents the name of the parameter, and the property’s value is the value of the
parameter. For example, let’s say you’ve rewritten (or overloaded) the GetTime-
AsString method as follows:

[WebMethod]
[ScriptMethod(UseHttpGet=true)]
public string GetTimeAsString(string formatString) {
 return DateTime.Now.ToString(formatString);
}

The method accepts a single parameter called formatString, which is used to
customize the format of the string with the current date. If the instance of the
ServiceMethodRequest class is called instance, you can write the following
imperative code to pass the formatString parameter:

instance.get_parameters().formatString = 'ddd MMM yyyy hh:mm:ss';

The previous imperative code can be obtained from the following declarative
code:

<serviceMethodRequest id="timeServiceMethod"
 url="DateTimeService.asmx"
 methodName="GetTimeAsString">
 <parameters formatString="ddd MMM yyyy hh:mm:ss" />
</serviceMethodRequest>

You’ve added a parameters element with the same name of the property that
returns the parameters object. At this point, each attribute that follows is added
as a property of the exposed object, and its value becomes the value of the prop-
erty. You can also declare multiple parameters elements, each with attributes that
are parsed as properties of the parameters object.

NOTE In the case of the ServiceMethodRequest class, the names of the prop-
erties added to the parameters object must match the names and the
case of the parameters declared in the web method. Otherwise, an excep-
tion will be raised at runtime.

Arrays
A similar notation is used for properties that return arrays. In XML Script, the
property is represented, as usual, by a tag with the same name as the property.
The difference is that every child element is parsed as an instance of a client
object and then added to the array. For example, suppose the client component

394 CHAPTER 11

XML Script
exposes a property called someArray, which returns a simple array literal. In XML
Script, you can write the following code:

<someComponent>
 <someArray>
 <label id="myLabel" />
 <textbox id="myTextBox" />
 </someArray>
</someComponent>

When this code is parsed, the array returned by the someArray property contains
two items: an instance of the Label control and an instance of the TextBox control.

 Now, we’ll again focus on XML Script features. Our goal was to leverage client
actions. So, let’s have some fun with them.

11.2.4 Custom actions

Creating a custom action is a straightforward process. First, you have to create a
client class that derives from the base Sys.Preview.Action class. Then, you must
override the performAction method. In this method, you insert the JavaScript
code that the action encapsulates.

 Let’s examine two examples of custom actions. The first example is an action
called AlertAction, which wraps a call to the JavaScript alert function that dis-
plays a string in a message box onscreen. In listing 11.8, the AlertAction class not
only overrides the performAction method but also exposes a custom message
property and a type descriptor.

Type.registerNamespace('Samples');

Samples.AlertAction = function() {
 this._message;
}
Samples.AlertAction.prototype = {
 performAction : function() {
 return alert(this._message);
 },

 get_message : function() {
 return this._message;
 },

 set_message : function(value) {
 this._message = value;
 }
}

Listing 11.8 Code for the AlertAction class

Code to
execute

B

message
property

C

Actions 395
Samples.AlertAction.descriptor = {
 properties: [{name: 'message', type: String}]
}
Samples.AlertAction.registerClass('Samples.AlertAction',
 Sys.Preview.Action);

The performAction method B contains the call to the alert function. The string
passed to the function is returned by the message property. Because every action
is a client component (because the base Sys.Preview.Action class derives from
Sys.Component), you need a type descriptor D to use the custom action in declar-
ative code. You only need to describe the unique message property C exposed by
the class.

 Now, look at listing 11.9, which shows an example use of the Alert action. The
example displays a greeting message as soon as the Application object raises its
load event.

<script type="text/xml-script">
 <page xmlns=http://schemas.microsoft.com/xml-script/2005
 xmlns:cc="javascript:Samples">
 <components>
 <application>
 <load>
 <cc:alertAction message="Hello Xml-script!" />
 </load>
 </application>
 </components>
 </page>
</script>

As we explained in section 11.1.5, if the custom component is located in a differ-
ent namespace than those listed in table 11.1, you should declare a new XML
namespace. In the page element, you associate the cc prefix with a URI that con-
tains the namespace to which the component belongs.

 The next custom action you’ll create extends the existing PostBack action and
prompts the user with a confirmation message before triggering the postback of
the page. If the user answers Yes, the postback is performed; otherwise, it’s
aborted. The code is shown in listing 11.10.

Listing 11.9 Using the Alert action in XML Script

Type
descriptor

D

396 CHAPTER 11

XML Script
Type.registerNamespace('Samples');

Samples.ConfirmPostBackAction = function() {
 this._message;
}
Samples.ConfirmPostBackAction.prototype = {
 get_message : function() {
 return this._message;
 },

 set_message : function(value) {
 this._message = value;
 },

 performAction : function() {
 if(window.confirm(this._message)) {
 return Samples.ConfirmPostBackAction.callBaseMethod(
 ➥this, 'performAction');
 }
 }
}
Samples.ConfirmPostBackAction.descriptor = {
 properties: [{name: 'message', type: String}]
}
Samples.ConfirmPostBackAction.registerClass(
 ➥'Samples.ConfirmPostBackAction',
 Sys.Preview.PostBackAction);

The message property sets the text to display in the confirmation window. The
performAction method contains the JavaScript code to execute when the action
is triggered. You ask the user whether to perform a postback of the page. If the
user agrees, you fire the base PostBack action by invoking the performAction
method on the base class. As you learned in chapter 3, this can be done with the
callBaseMethod method.

 Let’s write some code to test the new ConfirmPostBack action. Listing 11.11
shows how to use the custom action to handle the click of a button element.

<div>
 <input type="button" id="myButton" value="Click Me" />
</div>

<script type="text/xml-script">

Listing 11.10 Code for the ConfirmPostBack action

Listing 11.11 Using the ConfirmPostBack action in XML Script

Code to
execute

Actions 397
 <page xmlns="http://schemas.microsoft.com/xml-script/2005"
 xmlns:cc="javascript:Samples">
 <components>
 <button id="postBackButton">
 <click>
 <cc:confirmPostBackAction target="postBackButton"
 message="Do you want to perform a postback?" />
 </click>
 </button>
 </components>
 </page>
</script>

Note that in the confirmPostBackAction element, you set the target attribute
that belongs to the base PostBackAction class. Then, you set the message
attribute, which is mapped to the message property of the custom action class.
The result is shown in figure 11.6.

 Actions are useful to encapsulate and reuse the imperative code needed to
perform common tasks in response to events raised by client components. The
ability to execute multiple actions in sequence makes it possible to execute big
portions of JavaScript code without writing a single line of imperative code.

 The next feature we’ll introduce is bindings, a powerful mechanism for syn-
chronizing the value of two properties. A binding is a relationship between two
properties of the same object or of different objects. This relationship is encapsu-
lated by a specialized binding object, which has a fundamental mission: It detects
when the value of one property changes and automatically reflects the change on
the other property. You saw a binding in listing 11.7, which was about the

Figure 11.6 The ConfirmPostBack action displays a confirmation message
onscreen before performing the postback of the page.

398 CHAPTER 11

XML Script
InvokeMethod action. In the code, a binding was used to synchronize the result
property of a ServiceMethodRequest instance to the text property of a Label con-
trol. You didn’t have to write all the JavaScript code required to access one prop-
erty and set the value of the other one. This is interesting functionality, so let’s
take a deep breath and examine bindings.

11.3 Bindings

Suppose you have a text box and a label in a page, and you want to synchronize
the text of the label with the text in the text box. With JavaScript, you would inter-
cept the change event of the text box, and then retrieve its text and set it as the
text of the label. This requires writing all the logic for subscribing to the event
and accessing the DOM elements involved.

 With a binding, the synchronization between the two properties is performed
automatically. This is possible because a binding can detect changes in the values
exposed by properties. To do that, a binding object relies on a mechanism called
property change notification, which we discussed in chapter 8.

 You can use bindings to create relationships between the properties exposed
by client components. As we’ll demonstrate in this section, bindings add expres-
siveness to declarative languages and make it possible to perform complex tasks
using only declarative code.

11.3.1 A simple binding

To take your first steps with bindings, you’ll use one to synchronize the text of a
text box with the text of a label. Listing 11.12 has a text box and a span element,
both associated with the corresponding wrapper controls. Whenever you change
the text typed in the text box, the binding automatically updates the text dis-
played in the label.

<input type="text" id="srcText" />

<script type="text/XML Script">
 <page xmlns="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <textBox id="srcText" text="initial text" />

 <label id="dstLabel">
 <bindings>

Listing 11.12 Binding between a text box and a label

Binding
sourceBBinding targetC

Bindings 399
 <binding id="binding1"
 dataContext="srcText"
 dataPath="text"
 property="text"
 />
 </bindings>
 </label>
 </components>
 </page>
</script>

In the code, the binding is declared in a B bindings tag, which is a child node of
label. Client components expose a property called bindings, which returns an
array with all the bindings hosted in the component. Later, you’ll see that bind-
ings can also be defined outside of any components.

NOTE Client components support bindings only in the Futures CTP. The Sys.
Component class as defined in the Microsoft Ajax Library 1.0 doesn’t offer
support for bindings at the moment.

Bindings are supposed to have a source and a target. The source is a component that
provides some data, and the target is a component that receives the data. Once
you’ve defined the source and the target of a binding, you have to choose which
property of the source and which property of the target you want to bind. Whenever
the value of the source property changes, the binding takes it and assigns it to the
target property. In this way, the two properties remain always synchronized.

 In listing 11.12, you declare the binding in the target component C, the
label. The source component is determined by assigning its id to the dataCon-
text attribute, and the name of the source property is the value of the dataPath
attribute D. The property attribute E specifies the name of the target property.

 If you run the example, the text of the label is set to the text in the text box.
This means the binding has been evaluated to keep the two properties synchro-
nized. If you modify the text in the text box and then press the Tab key, the bind-
ing is re-evaluated because a change in the source property has been detected.

 However, life isn’t so simple. Bindings in XML Script can be declared outside
of any components. They’re also able to work the opposite way by swapping the
source and the target. They can even work in a bidirectional way. In the following
sections, we’ll clarify these concepts one by one.

Binding
definition

D

Target
property E

400 CHAPTER 11

XML Script
11.3.2 Binding direction

In the first example, you saw how to define a binding between the text of a text
box (the source of the data) and the text of a label (the target of the data). By
doing that, you implicitly defined a direction for the binding. Every time the source
property is modified, the binding is evaluated and the target property is updated;
the data involved in the binding goes from the source property to the target prop-
erty. Now, let’s try the following experiment. In listing 11.12, replace the binding
declaration with this one:

<binding id="binding1"
 dataContext="txtSource"
 dataPath="text"
 property="text"
 direction="Out" />

The declaration is almost the same, but you add a direction attribute and set it to
Out. To complete the experiment, add the following JavaScript block after the
XML Script code:

<script type="text/javascript">
<!--
 function pageLoad() {
 $find('dstLabel').set_text("Label's text");
 }
//-->
</script>

The JavaScript code programmatically sets the label’s text when the page is
loaded. If you run the example again, you’ll discover that this time, the text in the
text box is synchronized to the text in the label. Setting the direction attribute to
Out swaps the source and target components of the binding. The direction
attribute determines the direction in which the binding is evaluated.

 If direction is set to In (the default value), the binding listens to changes in
the value of the source property. When the value of the property changes, the tar-
get property is updated automatically. If direction is set to Out, the binding lis-
tens to changes in the value of the target property and updates the source
property accordingly.

 The direction attribute can be set to a third value, InOut, which is called bidi-
rectional mode. In this case, the binding listens for changes in both the source and
target properties, and updates the other one correspondingly.

 Because things have become more complicated, you need a clear view of the
other properties of bindings. In the next sections, we’ll shed some light on the
data path and target properties.

Bindings 401
11.3.3 Target and data path

When you declare a binding in XML Script, the dataContext attribute determines
the source component for the binding, assuming the binding direction is set to
In. The counterpart of the dataContext attribute is the target attribute, which
determines the target component for the binding. If a binding is declared “in” a
component—as a child node of the bindings element—the component automat-
ically becomes the target of the binding. This is what happens, for example, in list-
ing 11.12, where you declare the binding in the label element.

NOTE Data context lets child elements inherit from their parent elements infor-
mation about the data source used for binding, as well as other character-
istics of the binding such as the path. If you bind the parent element to a
data source, the child elements automatically inherit the data-source
information from the parent control. We’ll present an example of declar-
ative data binding in chapter 13.

 A binding can also be declared outside of any components. To declare a stand-
alone binding, you have to explicitly set the target attribute. For example, you
can move the binding defined in listing 11.12 outside the label and declare it
under the components node, as shown in listing 11.13.

<binding id="binding1"
 target="dstLabel"
 dataContext="srcText"
 dataPath="text"
 property="text"
 />

Once you’ve specified the source component of a binding, you use the dataPath
attribute to reach a particular property in the source component. This can be one
of the properties exposed by the source component, but it can also be a property
exposed by a child object of the source component. If the child object is a DOM
element, you can also reach one of its properties.

 To reach a property exposed by a child object of the source component, you
can use the traditional dotted notation, as follows:

dataPath="childObject.childProperty"

The binding object can interpret the previous value in two ways. If
get_childObject returns a component, then the data path is evaluated as follows:

Listing 11.13 A stand-alone binding

402 CHAPTER 11

XML Script
var propertyValueToBind =
 sourceComponent.get_childObject().get_childProperty();

If get_childObject returns a JavaScript object, the remaining parts are inter-
preted as properties of the object, and the data path is evaluated like so:

var propertyValueToBind =
 sourceComponent.get_childObject().childProperty;

The same reasoning applies to the target component. In this case, you obtain the
data path for the target component by concatenating the values of the property
and propertyKey attributes. Then, it’s evaluated the same way as the value of the
dataPath attribute.

 As a quick example, add the following binding to the bindings element in list-
ing 11.2. It binds the background color of the text box to the background color of
the label:

<binding id="binding1"
 target="dstLabel"
 dataContext="srcText"
 dataPath="element.style.backgroundColor"
 property="element"
 propertyKey="style.backgroundColor"
 />

In this case, the data paths of both the source and target components are evalu-
ated as follows:

var valueToBind = component.get_element().style.backgroundColor;

The behavior of a binding changes if you reference a property of a client object or
DOM element rather than a property exposed by a client component. Properties
exposed by client components can raise the propertyChanged event. We dis-
cussed this event in chapter 8. Shortly, you’ll see that a binding relies on this event
to perform the automatic synchronization of two properties.

 If the data path references a property of a simple object or of a DOM element,
then the binding must be evaluated explicitly to synchronize the values. To better
understand the concept of binding evaluation, we need to take a quick look at
how bindings work.

11.3.4 Bindings as components

Bindings are client components like controls and actions. Specifically, a binding is
an instance of the Sys.Preview.Binding class. As a consequence, bindings can be
instantiated programmatically without necessarily using them in XML Script.

Bindings 403
 One of the powerful features of bind-
ings is that they can keep two properties
synchronized automatically, without the
need for you to explicitly evaluate the bind-
ing. This can be done thanks to the prop-
erty notification mechanism discussed in
chapter 8. A binding uses the property-
Changed event exposed by client compo-
nents to track changes in the values
exposed by properties. If a property
involved in a binding calls the raiseProp-
ertyChanged method, the propertyChanged event is raised and the binding can
detect a change in the value of the property. As a consequence, the change can be
propagated to the target property, as shown in figure 11.7. When a property
involved in a binding doesn’t implement the notification mechanism, the binding
must be explicitly evaluated.

 Evaluating a binding means synchronizing the values of the bound properties.
The evaluation is performed by two methods of the Binding object: evaluateIn
and evaluateOut. The evaluateIn method synchronizes the value of the target
property to the value of the source property; the evaluateOut method does the
opposite job. To evaluate the binding in a bidirectional way, you call both the
evaluateIn and evaluateOut methods.

 Let’s see what JavaScript code is generated when the markup code of a binding
is parsed. The following code shows the imperative code corresponding to the
stand-alone binding declared in listing 11.13:

var binding = new Sys.Preview.Binding();

binding.set_id('binding1');
binding.set_target($find('dstLabel'));
binding.set_dataContext($find('srcText'));
binding.set_dataPath('text');
binding.set_property('text');
binding.set_direction(Sys.Preview.BindingDirection.Out);

It’s easy to translate the declarative code into imperative code, because of the cor-
respondence that exists between attributes in the markup code and properties of
the client component. The direction property receives one of the values defined
in the Sys.Preview.BindingDirection enumeration; this value can be In, Out,
or InOut.

 So far, we’ve presented the evaluation of a binding as a process that synchro-
nizes the values of two properties. But the value of the source property can be

Component 1

Component 2
Property 2

Property 1

Figure 11.7 Bindings can synchronize the
values of two properties of the same or
different components.

404 CHAPTER 11

XML Script
transformed to obtain the value of the target property. This is done with special
functions called transformers. A transformer is a function that takes an input value
and uses it to produce the output value. As you’ll see, bindings can use transform-
ers to obtain the actual value that will be bound to the target property.

11.3.5 Transformers

To illustrate the concept of transformers, look at listing 11.14, which shows an
example of a counter built using XML Script. To display the value of the counter,
you use a simple Label control. Interestingly, to update the counter’s value, you
bind the text property of the Label control to itself. Then, you use a transformer
that takes the current value of the text property and computes the next value of
the counter. Finally, you assign the new value back to the text property.

<div>

</div>

<script type="text/xml-script">
 <page xmlns:script=
 ➥"http://schemas.microsoft.com/xml-script/2005">
 <components>
 <label id="myLabel" text="0">
 <bindings>
 <binding id="lblBinding"
 dataContext="myLabel"
 dataPath="text"
 property="text"
 transform="Add"
 automatic="false"
 />
 </bindings>
 </label>

 <timer id="theTimer" enabled="true" interval="1000">
 <tick>
 <invokeMethodAction target="lblBinding"
 method="evaluateIn"
 />
 </tick>
 </timer>
 </components>
 </page>
</script>

Listing 11.14 A counter built with XML Script

Binding
in label
control

B

Timer
component

C

Evaluate
binding
manually

D

Bindings 405
The HTML markup contains a span element, which is associated to the label con-
trol in the XML Script code. In the label is a binding B in which the source and
the target property are the same. Because the binding is added to the bindings
collection of the label, the target is the label itself. In addition, the data context is
set to the label control.

 The transformer to use is specified in the transform attribute of the binding
tag. It’s a JavaScript function that handles the transform event that a Binding
object raises before setting the value of the target property. This event gives exter-
nal objects a chance to modify the value of the target property based on the value
of the source property. The function that handles the transform event is called
the transformer.

 In listing 11.14, you use the Add transformer, which is one of the built-in trans-
formers available as methods of the Sys.Preview.BindingBase.Transformers
object. The Add transformer returns the value of the source property incremented
by one. Note that in the binding tag, the automatic attribute is set to false. This
means the binding is evaluated only when you explicitly call the evaluateIn or
evaluateOut method. The default value for the automatic property is true,
which means the binding is evaluated automatically every time a change in one of
the properties is detected. In this case, the evaluation method to call is deter-
mined by the value of the direction property.

 The code introduces a new and useful component: a timer C. The timer is an
instance of the Sys.Preview.Timer class. The interval attribute specifies the
timer’s interval, and the enabled property specifies whether the timer should be
started as soon as the instance is created. When the timer’s interval elapses, a tick
event is raised. In listing 11.14, you handle the tick event with an InvokeMethod
action D that calls the evaluateIn method of the binding. The new value of the
counter is explicitly computed on every tick and then displayed in the label.

 The Add transformer is just one of the many built-in transformers available. In
the next section, we’ll look at the other transformers and show you a couple of
tricks and tips. We’ll also explain how to create custom transformers and leverage
them in XML Script.

11.3.6 Playing with transformers

In general, a transformer can behave differently based on the value of two differ-
ent parameters:

406 CHAPTER 11

XML Script
■ The transformer argument—A parameter you can supply to generate the out-
put value. For example, in the Add transformer, this argument is used to
specify the increment value.

■ The binding’s direction—For example, if the direction is set to Out, the Add
transformer subtracts the increment value instead of adding it.

To understand how you can tweak a transformer, let’s try to replace the binding
declared in listing 11.14 with the following one:

<binding id="lblBinding"
 dataContext="myLabel"
 dataPath="text"
 property="text"
 transform="Add"
 transformerArgument="2"
 automatic="false"
 />

If you run the counter again, you’ll see that its value is incremented by 2 on every
tick.

 Now, let’s introduce another built-in transformer called Multiply. In
listing 11.14, set the text attribute of the label to 1 and replace the binding with
this one:

<binding id="lblBinding"
 dataContext="myLabel"
 dataPath="text"
 property="text"
 transform="Multiply"
 transformerArgument="2"
 automatic="false"
 />

If you run the example, the counter multiplies the current value by 2, and the fac-
tor is determined by the transformerArgument attribute. Like the Add trans-
former, Multiply behaves differently if the direction of the binding changes. Add
the following attribute to the previous binding declaration:

direction="Out"

Now, the current value is divided by 2 instead of multiplied. The same thing works
for the Add transformer. If the binding’s direction is set to Out, the input value is dec-
remented by 1 or by the quantity specified in the transformerArgument. Table 11.2
lists the built-in transformers available in the PreviewScript.js file.

Bindings 407
Transformers become powerful when you start creating custom ones. With a cus-
tom transformer, new scenarios open, such as performing data binding with declar-
ative code. In chapter 13, you’ll see an example of declarative data binding with
XML Script. In the next section, you’ll learn how to create custom transformers.

Table 11.2 Built-in transformers available in the ASP.NET Futures

Name Description Transformer argument Binding direction

Invert Performs a Boolean NOT of
the input value.

- In

ToString Formats the input value into a
string. The input value
replaces the {0} placeholder.

The format string with
a {0} placeholder.

In

ToLocaleString Same as ToString, but the
input value is formatted using
the toLocaleString
method.

The format string with
a {0} placeholder.

In

Add Adds a number to or subtracts
a number from the input
value.

The number to add or
subtract.

If the direction is In,
performs an addition.
If the direction is
Out, performs a
subtraction.

Multiply Multiplies a number by or
divides a number from the
input value.

The factor or divisor. If the direction is In,
performs a multipli-
cation. If the direc-
tion is Out, performs
a division.

Compare Returns the result of the com-
parison between the input
value and the transformer
argument using the
identity operator.

The comparand. In

CompareInverted Same as Compare, but the
comparison is performed with
the !== operator.

The comparand. In

RSSTransform Parses an XmlDom object
with an RSS feed into a
DataTable.

- In

408 CHAPTER 11

XML Script
11.3.7 Custom transformers

A custom transformer is a JavaScript function used to handle the transform event
raised by a binding object. When the transform event is raised, the transformer is
called, and the event arguments contain an instance of the Sys.Preview.Binding-
EventArgs class. This instance contains all the properties you need to compute the
transformed value and pass it to the binding. The BindingEventArgs class exposes
the following methods:

■ get_value—Returns the value to transform, which is the value of the source
property

■ set_value—Sets the transformed value, which is the value of the target
property

■ get_direction—Returns the value of the binding’s direction property

■ get_targetPropertyType—Returns the type of the target property

■ get_transformerArgument—Returns the transformer argument

Creating a custom transformer is straightforward. A transformer retrieves the
input value with the get_value method and then computes the transformed
value based on the binding’s direction and the transformer argument. Finally, it
calls the set_value method, passing the transformed value as an argument.

 The code in listing 11.15 shows a custom transformer called ScrollMessage,
which simulates a simple scroll effect on a string displayed in a label. Believe it or
not, you use the transformer from the counter example, thus turning the counter
into a scrolling message.

function GreetMessage(sender, e) {
 var message = e.get_transformerArgument();

 if(typeof(message) !== 'string') return;

 var currText = e.get_value();
 var nextIndex = currText.length == 0 ? message.length :
 (currText.length - 1) % (message.length + 1);
 var nextText = message.substr(message.length - nextIndex,
 message.length);

 e.set_value(nextText);
}

Listing 11.15 A custom transformer that simulates a simple scroll effect

Get message
to scroll

B

Get displayed
text

C

Save
transformed text

D

Summary 409
The GreetMessage function is declared with the sender and e parameters,
because it’s a handler for the transform event. In the code, you retrieve the mes-
sage to scroll through the get_transformerArgument method B and the input
value through the get_value method C. Then, you trim the first letter to obtain
the transformed text. The transformed text is saved D by passing it to the
set_value method.

 If you replace the binding in listing 11.14 with the following one, and add the
ScrollMessage function in a JavaScript code block in the test page, you can see
the new transformer in action:

<binding id="lblBinding"
 dataContext="myLabel"
 dataPath="text"
 property="text"
 transform="GreetMessage"
 transformerArgument="2"
 automatic="false"
 />

11.4 Summary

In this chapter, we introduced XML Script, a powerful declarative language for
creating instances of client components. In a manner similar to what happens
with ASP.NET markup code, the Microsoft Ajax Library can parse the XML Script
contained in a web page, instantiate the client components, and wire them
together. With XML Script, you can benefit from many features available to declar-
ative languages and dramatically decrease the quantity of JavaScript code you
have to write.

 Among the features provided by XML Script are actions, which are objects that
encapsulate a portion of reusable JavaScript code. You can use actions to handle
events in declarative code without writing a single line of imperative code.

 In XML Script, you can also declare bindings. A binding is an object that can
synchronize the values of two properties of the same object or of different objects.
The synchronization can be performed automatically when a change in the value
of a property is detected. Bindings can use transformers to change the value that
will be bound to the target property. A transformer is a function that takes an
input value and uses it to produce the transformed value.

 In the next chapter, we’ll talk about the drag-and-drop engine.

Dragging and dropping
In this chapter:
■ The drag-and-drop engine
■ The IDragSource and IDropTarget interfaces
■ Building a client-centric drag-and-drop shopping

cart
■ Building an ASP.NET server-centric drag-and-drop

shopping cart
410

The drag-and-drop engine 411
How many times a day do you move files from one folder to another, between win-
dows, or even directly into the recycle bin, using only your mouse and one of your
fingers? Every time you perform these actions, you complete a drag-and-drop oper-
ation, which is the visual representation of a set of commands. For example, if you
move (or drag) a file icon from your desktop and release (drop) it over the recycle-
bin icon, you’re visually “throwing away” the file and marking it for deletion (but
remember to restore it if you aren’t going to delete it!).

 Drag and drop is a powerful mechanism that enhances UIs. The introduction
of the browser’s DOM gave JavaScript developers a chance to implement drag and
drop in web pages using CSS and dynamic HTML.

 In this chapter, we’ll analyze the drag-and-drop engine included in the
ASP.NET Futures package. Your goal is to master the client classes used to add
drag-and-drop capabilities to DOM elements of web pages. By the end of the chap-
ter, you’ll have the skills to develop a drag-and-drop shopping cart using both the
client-centric and the server-centric development models. As part of the ASP.NET
Futures package, the features illustrated in this chapter aren’t currently docu-
mented or supported by Microsoft.

12.1 The drag-and-drop engine

The drag-and-drop engine is a set of client classes and interfaces for performing
drag and drop in web pages. When we say drag and drop in web pages, we mean mov-
ing DOM elements around the page. You can also simulate the events and effects
typical of drag and drop in the operating system. What you can’t do with the drag-
and-drop engine is interact with external applications or move data between
them. But adding drag-and-drop capabilities to DOM elements can improve the
user experience and take the web application to the next level.

 Before we look at the drag-and-drop engine provided by the Microsoft Ajax
Library, you need to enable it in a page. The JavaScript code is located in the Pre-
viewScript.js and PreviewDragDrop.js files, both embedded as web resources in
the Microsoft.Web.Preview.dll assembly. Listing 12.1 shows how the ScriptMan-
ager control looks after the script files are referenced in the Scripts section.

<asp:ScriptManager ID="TheScriptManager" runat="server">
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview"
 Name="PreviewScript.js"/>

Listing 12.1 Enabling drag and drop in an ASP.NET page

412 CHAPTER 12

Dragging and dropping
 <asp:ScriptReference Assembly="Microsoft.Web.Preview"
 Name="PreviewDragDrop.js"/>
 </Scripts>
</asp:ScriptManager>

The PreviewScript.js file contains the base components needed to use the features
of the ASP.NET Futures package. The PreviewDragDrop.js file is the script file that
contains the components of the drag-and-drop engine. Once the script files are
properly referenced, you’re ready to code against the drag-and-drop API.

 The elements involved in drag and drop have specific names, depending on
their role in a drag-and-drop operation. In general, you have the following:

■ Draggable items—DOM elements that can be dragged around the page

■ Drop zones (or drop targets)—DOM elements that allow draggable items—that
is, other DOM elements—to be dropped onto their area

For example, think of dragging a file over a folder in order to copy or move it.
The file icon is the draggable item, and the folder icon is the drop target. Now,
let’s focus on the architecture of the drag-and-drop engine.

12.1.1 How the engine works

Enabling the drag-and-drop engine is just the first step. The engine is responsible
for coordinating a drag-and-drop operation and providing information about the
elements involved, but you must write part of the logic needed to interact with it.
For example, you must inform the engine which elements act as the draggable
items and where the drop zones are on the page. You’re also responsible for
detecting the start of a drag-and-drop operation and taking actions when it ends.

 Have no fear: We’ll guide you through the process to successfully set up a drag-
and-drop–enabled UI. The first step is to represent the draggable items and the
drop targets with client components. These components encapsulate the logic
needed to deal with the drag-and-drop engine. You associate them with the DOM
elements involved in the drag-and-drop operation; so, we’ll use the terms draggable
item and drop target to refer to the client components (either controls or behav-
iors) as well as to the associated DOM elements.

 All the components involved in drag and drop must deal with the DragDrop-
Manager, a global JavaScript object that is created during the loading of the page
and stored in a global variable called Sys.Preview.UI.DragDropManager. Al-
though you access the DragDropManager through the same variable, the underly-
ing instance is different depending on the browser that is rendering the page. In

The drag-and-drop engine 413
Internet Explorer, the DragDropManager is an instance of the Sys.Pre-
view.UI.IEDragDropManager class; in the other supported browsers, you get an
instance of the Sys.Preview.UI.GenericDragDropManager class. The reason for
this difference is that Internet Explorer for Windows, starting with version 5.0,
includes a group of drag-and-drop events in its DOM implementation. The
IEDragDropManager class takes advantage of this API to implement the drag-and-
drop engine. Does this mean you face new incompatibilities on the road to drag
and drop? No. Despite the browser-specific implementations, the drag-and-drop
engine offers the same features on all the browsers supported by ASP.NET AJAX.

Engine overview
To perform a drag-and-drop operation, you need at least a draggable item and a
drop target. As we said before, both are DOM elements of a web page. They’re also
both associated with a client component that encapsulates the logic needed to
deal with the DragDropManager.

 The first thing a drop target does is register itself with the DragDropManager.
It does so by invoking the registerDropTarget method of the DragDropManager
instance. This way, the drop target tells the DragDropManager that it must con-
sider the associated element a valid drop zone.

 Usually, drag and drop in a web page starts when the user holds down the left
button (Click on a Mac) on a DOM element and starts moving the mouse. When
this happens, the draggable item invokes the startDragDrop method of the Drag-
DropManager, signalling that a drag-and-drop operation has started and that the
associated element is the source of the operation. This communication is illus-
trated in figure 12.1.

 When the DragDropManager recognizes the draggable items and drop targets
involved in drag and drop, it opens a communication channel with them. The purpose

Draggable Item DragDropManager Drop Target

registerDropTarget()startDragDrop()

Figure 12.1 Draggable items and drop targets communicate with the DragDropManager to
participate in a drag-and-drop operation.

414 CHAPTER 12

Dragging and dropping
is to provide feedback about the progress of the operation. Receivers can use this
feedback to determine the status of the operation and to enhance the user experi-
ence based on the current state. For example, a draggable item may want to display
a semitransparent copy of the element being dragged, near the mouse pointer. A
drop target may decide to highlight its area when an element is dragged over it.

 To receive feedback from the DragDropManager, draggable items must imple-
ment the Sys.Preview.UI.IDragSource interface. Drop targets have to implement
the Sys.Preview.UI.IDropTarget interface. Figure 12.2 shows the bidirectional
communication established between the DragDropManager, draggable items, and
drop targets.

 Without the ability to access data, a drag-and-drop operation would remain
just a visual effect. The goal is to obtain a visual representation of a particular elab-
oration. The IDragSource and IDropTarget interfaces define methods to process
the data associated with a drag-and-drop operation, so you can process the data
during the phases of the operation. For example, if you drag a file icon over the
recycle-bin icon, you want the file marked for deletion. Similarly, if you drag a file
over a folder, you expect the file to be copied or moved in that particular folder.
You must be able to access and process the file involved in the drag-and-drop
operation. The possibility of accessing data during a drag-and-drop operation
gives you the entire picture of the drag-and-drop engine, illustrated in figure 12.3.

 Now that you know the overall workings of the drag-and-drop engine, it’s time
to sit at a keyboard and start writing some code. In the next section, you’ll imple-
ment your first drag-and-drop operation by simulating a basic drag-and-drop
shopping cart.

Draggable Item DragDropManager Drop Target

registerDropTarget()startDragDrop()

IDragSource IDropTarget

Figure 12.2 Draggable items and drop targets can receive feedback from the
DragDropManager through the IDragSource and IDropTarget interfaces.

The drag-and-drop engine 415
12.1.2 A simple scenario for drag and drop

Suppose that recently you were promoted to IT Director at your company (it’s
about time!). As new developers come aboard, you want to make sure they have
access to the right tools. To start, you create a shopping list of essential books that
each individual needs. This concept is illustrated in figure 12.4, which shows
images of a book and a shopping cart. You want to be able to drag the book over
the cart to have it added to the list of books to buy. The data transferred can be
represented by the book’s ISBN code, which is its unique identification number.

 Needless to say, you want to implement this scenario with the Microsoft Ajax drag-
and-drop engine. To reach this objective, you have to apply what you learned in the
previous section about the drag-and-drop engine. You need to code the following:

■ A client control that represents the draggable item, in this case a book—The associ-
ated DOM element can be either the book image or a div element that con-
tains the image. The control implements the logic needed to deal with the
DragDropManager and receives its feedback by implementing the IDrag-
Source interface. The control also encapsulates the data that you need to
access: the ISBN number.

■ A client control that represents the drop target, in this case the shopping cart—Again,
the associated DOM element can be either the cart image or a div element
that contains the image. By implementing the IDropTarget interface, you
can receive the feedback provided by the DragDropManager.

Draggable Item DragDropManager Drop Target

registerDropTarget()startDragDrop()

IDragSource IDropTarget

Data Transfer

Figure 12.3 Diagram of the Microsoft Ajax drag-and-drop engine

416 CHAPTER 12

Dragging and dropping
In the following sections, we’ll show you how to build these controls and explain
the nuts and bolts of the drag-and-drop engine. In the process, you’ll write the
code in a manner in which it can be reused for different scenarios. Let’s start
learning how to create a draggable item.

12.1.3 Creating a draggable item

When you want to perform drag and drop, you always click an item onscreen—for
example, an icon—with the left mouse button (Click on a Mac). Then, you move
the mouse and begin dragging. This behavior is also reasonable for DOM ele-
ments, and it’s the reason you always trigger a drag-and-drop operation by hook-
ing the mousedown event of the draggable DOM element. A draggable item
triggers a drag-and-drop operation in the following way:

■ It hooks up the mousedown event of the associated DOM element.

■ In the event handler, it calls the startDragDrop method on the DragDrop-
Manager.

Figure 12.4 Example of a drag-and-drop operation that involves adding a book to
a shopping cart

The drag-and-drop engine 417
In the following example, you’ll create a client control whose associated ele-
ment can be dragged around the page. The control is called BookItem, and it
represents the book in the scenario outlined in the previous section. The code in
listing 12.2 contains the logic that every draggable item must implement to deal
with the DragDropManager.

Type.registerNamespace('Samples');

Samples.BookItem = function(element) {
 Samples.BookItem.initializeBase(this, [element]);

 this._bookId = null;
 this._dragStartLocation = null;
}
Samples.BookItem.prototype = {
 initialize : function() {
 Samples.BookItem.callBaseMethod(this, 'initialize');

 $addHandlers(this.get_element(),
 {mousedown:this._onMouseDown}, this);
 },

 dispose : function() {
 $clearHandlers(this.get_element());
 Samples.BookItem.callBaseMethod(this, 'dispose');
 },

 _onMouseDown : function(evt) {
 window._event = evt;
 evt.preventDefault();

 Sys.Preview.UI.DragDropManager.startDragDrop(this,
 this.get_element(), null);
 },

 get_bookId : function() {
 return this._bookId;
 },

 set_bookId : function(value) {
 this._bookId = value;
 }
}
Samples.BookItem.registerClass('Samples.BookItem', Sys.UI.Control);

Listing 12.2 Code for the BookItem control, which represents a draggable item

Store original
location of elementB

Hook up
mousedown event

C

Store event object in
window instance

D

Start drag-
and-drop
operation

E

418 CHAPTER 12

Dragging and dropping
The mousedown event of the associated element is hooked up C in the initial-
ize method. In the event handler E, _onMouseDown, you call the startDragDrop
method of the DragDropManager, passing a reference to the current instance and
the associated element as arguments. Note that you store the event object in the
window._event property D. This is required by the DragDropManager in order
to access the event object for the mousedown event.

 The _dragStartLocation field B stores the x and y coordinates of the loca-
tion of the associated element before it starts being dragged. You save the original
location of the element because you may need to restore it if the drag-and-drop
operation fails. Later, you’ll see how you can establish whether a drag-and-drop
operation succeeded or failed.

 The key to start a drag-and-drop operation is to call the DragDropManager’s
startDragDrop method. For this reason, it’s important to understand the various
parameters accepted by this method.

12.1.4 The startDragDrop method

The first argument passed to the startDragDrop method is the drag source,
which is the draggable item itself. You’ll pass the this keyword, which always
points to the current instance of the control.

 The second argument is called the drag visual, and it’s the element that follows
the mouse pointer during the drag phase. In the Microsoft Ajax Library, you imple-
ment the drag movement by dynamically changing the element’s location so it fol-
lows the mouse pointer as soon as it’s moved in the page area. Typically, the
draggable element follows the mouse; this way, you can simulate a dragging effect.
It’s also possible to specify a different element as the drag visual; this approach is
useful if you don’t want to drag the associated element but instead drag a semitrans-
parent clone. This happens, for instance, when you start dragging one of the icons
in your desktop. The icon remains at its original location, and an alpha-blended
copy is used during the dragging phase. To keep things simple, in listing 12.1 you
pass the associated element as the drag visual; this is the element dragged around
the page.

 The last argument accepted by the startDragDrop method is a context object.
This object is shared by the draggable item and all the registered drop targets. It’s
supposed to contain references that can be accessed by all the objects involved in
a drag-and-drop operation.

 Once you make the call to the startDragDrop method, the control officially
acquires the role of draggable item. If all goes well, this is all you need to do to
drag the associated element around the page. But you want some feedback from

The drag-and-drop engine 419
the DragDropManager, because it’s fundamental to determine the current status
of the drag-and-drop operation. Therefore, you need to introduce the IDrag-
Source interface. In the next section, you’ll implement the interface in the Book-
Item control.

12.1.5 The IDragSource interface

Draggable items implement the Sys.Preview.UI.IDragSource interface to receive
feedback—from the DragDropManager—about the status of a drag-and-drop oper-
ation. Table 12.1 lists the methods it defines, along with their descriptions.

The first method, get_dragDataType, returns an identifier for the type of data
you’re carrying. When a draggable item is dragged over a drop target, the identi-
fier is passed to the drop target. Based on its value, the drop target can decide
whether the draggable item can be dropped. If the dropped item isn’t allowed,
the drag-and-drop operation fails.

 The second method, getDragData, returns the carried data. Usually, the data
is encapsulated by the control. As a consequence, a draggable item can return a
reference to itself or to its associated element. You can access the component asso-
ciated with a DOM element through the properties of the element, as we
explained in chapter 8. Note that the getDragData method receives the context
object that the draggable item passed to the startDragDrop method of the Drag-
DropManager, as illustrated in section 12.1.4.

Table 12.1 Methods defined in the IDragSource interface

Method Description

get_dragDataType Returns the type of data associated with the drag-and-drop operation

getDragData Returns the data associated with the drag-and-drop operation

get_dragMode Returns the drag mode

onDragStart Called when the drag-and-drop operation begins

onDrag Called whenever the drag visual is dragged

onDragEnd Called when the drag phase ends

420 CHAPTER 12

Dragging and dropping
NOTE In the Windows drag-and-drop engine, as well as in the IE’s DOM API,
drag-and-drop data is stored in a special data object called dataTransfer,
which accepts only certain types of data. The Microsoft Ajax drag-and-
drop engine mimics this behavior with the concept of data type, although
the data object can be a generic JavaScript object. To learn more about
the dataTransfer object, browse to: http://msdn2.microsoft.com/en-us/
library/ms535861.aspx.

The get_dragMode method returns one of the values of the Sys.Pre-

view.UI.DragMode enumeration: Move or Copy. These values define the current
mode of the drag-and-drop operation, but they aren’t associated with a default
behavior. It’s up to you to write the custom code needed to take concrete actions
based on the current mode. As an example, let’s consider again a file being
dragged over a folder icon. When you drop the file over the folder, the file can be
moved or copied depending on the drag mode. In Windows, you can make a
choice by using the right mouse button to perform the drag and drop.

 The remaining methods, onDragStart, onDrag, and onDragEnd, take actions
during the drag phase. Figure 12.5 shows that the onDragStart method is invoked
as soon as an element begins being
dragged. The onDrag method is called
repeatedly every time the element
moves. Finally, the onDragEnd method
is invoked when the user releases the
mouse button. As we’ll explain in sec-
tion 12.1.6, the onDragEnd method is
the right place to determine whether
the drag-and-drop operation suc-
ceeded or failed.

 Listing 12.3 shows an implemen-
tation of the IDragSource interface.
Add the code to the prototype object
of the BookItem control created in
listing 12.1. This way, you can partici-
pate in the drag-and-drop operation
and customize the behavior of the
draggable item.

onDragStart()

onDrag()

onDragEnd()

Figure 12.5 You can override the onDragStart,
onDrag, and onDragEnd methods of the
IDragSource interface to take actions during the
drag phase.

http://msdn2.microsoft.com/en-us/library/ms535861.aspx
http://msdn2.microsoft.com/en-us/library/ms535861.aspx

The drag-and-drop engine 421
get_dragDataType : function() {
 return '__bookItem';
},

getDragData : function(context) {
 return this.get_element();
},

get_dragMode : function() {
 return Sys.Preview.UI.DragMode.Move;
},

onDragStart : function() {
 Sys.Debug.trace('Drag and Drop started');

 this._dragStartLocation =
 Sys.UI.DomElement.getLocation(this.get_element());
},

onDrag : function() {
},

onDragEnd : function(cancelled) {
 Sys.Debug.trace('Drag and Drop ended');

 var element = this.get_element();

 if (cancelled) {
 Sys.UI.DomElement.setLocation(element,
 this._dragStartLocation.x, this._dragStartLocation.y);
 }
 else {
 alert('Item dropped! ISBN code: ' + this.get_bookId());
 }
}

You return__bookItem B as the data type exposed by the BookItem control. You
also return the associated element C as the drag data. Because the element is
associated with a BookItem instance, you need to access the control property of
the DOM element to retrieve a reference to the client control.

 In the onDragStart method, you store the original location of the associated
element D in the _dragStartLocation field that you declared in the BookItem
class. This way, you can restore the original position E if the drag-and-drop oper-
ation fails.

Listing 12.3 IDragSource interface implementation

Data
type

B

Drag
mode

C

Original
location of
element

D

Restore
original location E

422 CHAPTER 12

Dragging and dropping
 The onDragEnd method is the right place to determine the status of the opera-
tion. The DragDropManager calls the method with a cancelled parameter that
tells you whether the drag-and-drop operation failed. If it did, the cancelled
parameter is set to true; otherwise, it’s set to false. Based on the value of the
cancelled parameter, you can take the appropriate actions. In the example, you
display a message with the book’s ISBN code if the drag-and-drop operation suc-
ceeds. In real-life scenarios, you’ll probably invoke a web service or a page method
that takes the book’s ISBN code and adds the article to the user’s shopping cart. In
section 12.2, you’ll take a similar approach to build a more complex drag-and-
drop shopping cart with ASP.NET.

 As soon as you embed the code in listing 12.3 in the BookItem’s prototype, you
must remember to register the IDragSource interface by modifying the call to the
registerClass method in the following way:

Samples.BookItem.registerClass('Samples.BookItem', Sys.UI.Control,
 Sys.Preview.UI.IDragSource);

We’re halfway done, so feel free to take a pause before proceeding. The next
step is to create a client control that behaves as a drop target. This will be the
shopping cart, and it will give us the chance to talk about drop zones and the
IDropTarget interface.

12.1.6 Creating a drop target

Having a draggable item would be useless without a place to drop it. To complete
the implementation of the basic drag-and-drop shopping cart example outlined
in section 12.1.2, you need a drop zone. The next task is to create a control that
turns the associated DOM element into a drop target. To do that, the control must
accomplish a simple task: registering itself as a drop target with the DragDrop-
Manager. The registration is usually done in the initialize method, with a call
to the DragDropManager’s registerDropTarget method. This method accepts a
reference to the drop target as an argument and adds it to an internal list held by
the DragDropManager.

 In the drag-and-drop scenario, the shopping cart will be the drop target. In fig-
ure 12.4, the cart is represented by an image element. The client control associated
with the image element is called CartZone, and its code is shown in listing 12.4.

The drag-and-drop engine 423
Type.registerNamespace('Samples');

Samples.CartZone = function(element) {
 Samples.CartZone.initializeBase(this, [element]);
}
Samples.CartZone.prototype = {
 initialize : function() {
 Samples.CartZone.callBaseMethod(this, 'initialize');

 Sys.Preview.UI.DragDropManager.registerDropTarget(this);
 },

 dispose : function() {
 Sys.Preview.UI.DragDropManager.unregisterDropTarget(this);

 Samples.CartZone.callBaseMethod(this, 'dispose');
 }
}
Samples.CartZone.registerClass('Samples.CartZone', Sys.UI.Control);

As anticipated, the registerDropTarget method is called in the initialize
method, where you perform the control’s initial setup. Its counterpart is the unreg-
isterDropTarget method, which is used to remove the control from the list of drop
targets held by the DragDropManager. It’s usually invoked in the dispose method,
where the cleanup of the current instance is performed.

 To receive feedback from the DragDropManager, a drop target must imple-
ment the IDropTarget interface. Following the same approach we took with the
BookItem control, we’ll first introduce the interface and then implement it in the
CartZone control.

12.1.7 The IDropTarget interface

The Sys.Preview.UI.IDropTarget interface is implemented by drop targets to
receive feedback from the DragDropManager. By implementing this interface, a
drop target can determine whether a draggable item can be dropped over its
area. You can also take actions based on the position of the draggable item with
respect to the drop zone. Table 12.2 lists the methods defined by the IDropTarget
interface along with their descriptions.

 The get_dropTargetElement method returns the DOM element that acts as
the drop zone. Usually, this is the associated element of the client component that
represents the drop target. When an element is being dragged, the DragDrop-
Manager calls this method on every registered drop targets. Then, it performs

Listing 12.4 Code for the CartZone class, which represents a drop zone

424 CHAPTER 12

Dragging and dropping
some calculations to determine whether the element being dragged is overlap-
ping the area occupied by a drop-zone element.

 If there is overlap with a drop zone, the DragDropManager calls the canDrop
method on the drop target to determine whether the draggable item can be
dropped over it. The canDrop method returns true if the drop operation is permit-
ted; otherwise it return false.
Typically, the drop target checks
whether the data-type identifier
passed by the DragDropMan-
ager to the canDrop method is
one of its accepted data types.
The value returned by the can-
Drop method affects the status
of the drag-and-drop operation.
The operation succeeds if the
canDrop method returns true.
In turn, this information is
propagated to the draggable
item through the cancelled

parameter, as we discussed in
section 12.1.5.

 As shown in figure 12.6, the
onDragEnterTarget, onDragIn-
Target, and onDragLeaveTar-
get methods are called when a

Table 12.2 Methods defined in the IDropTarget interface, which is implemented by drop
 targets to receive feedback from the DragDropManager

Method Description

get_dropTargetElement Returns the DOM element that acts as the drop zone

canDrop Returns a Boolean value that tells whether a draggable
item can be dropped over the drop zone

drop Called when an element is dropped over the drop zone

onDragEnterTarget Called when an element enters the drop zone

onDragLeaveTarget Called when an element leaves the drop zone

onDragInTarget Called whenever an element is dragged over the drop zone

onDragEnterTarget()

onDragInTarget()

onDragLeaveTarget()

Figure 12.6 The onDragEnterTarget,
onDragInTarget, and onDragLeaveTarget methods
of the IDropTarget interface are called by the
DragDropManager when a draggable item overlaps with a
drop target.

The drag-and-drop engine 425
draggable item enters a drop zone, is dragged in a drop zone, or leaves it, respec-
tively. The drop method is called when an element is dropped over the drop zone,
in a manner independent of whether the drag-and-drop operation succeeded
or failed.

 Listing 12.5 shows an implementation of the IDropTarget interface. As you
did for the BookItem class, insert the following code in the prototype object of the
CartZone control that you created in listing 12.3.

get_dropTargetElement : function() {
 return this.get_element();
},

canDrop : function(dragMode, dataType, dragData) {
 return dataType == '__bookItem';
},

drop : function(dragMode, dataType, dragData) {
 Sys.Debug.trace('Item dropped');
},

onDragEnterTarget : function(dragMode, dataType, dragData) {
 this.get_element().style.backgroundColor = '#808080';
},

onDragInTarget : function(dragMode, dataType, dragData) {
},

onDragLeaveTarget : function(dragMode, dataType, dragData) {
 this.get_element().style.backgroundColor = '#FFFFFF';
}

In the previous code, the drop zone is the associated DOM element of the Cart-
Zone control B. A valid drop also happens when a draggable item carries data of
type __bookItem. In this case, the canDrop method returns true C, and the drag-
and-drop operation succeeds.

 In the implementation, you also change the background color of the drop
zone element as soon as a draggable item enters it. In a similar way, you change
the background color to white when the draggable item leaves the drop zone.

 When you embed the code in listing 12.5 in the CartZone prototype, don’t for-
get to register the IDropTarget interface by modifying the call to the register-
Class method as follows:

Listing 12.5 IDropTarget interface implementation

Return drop-
zone element

B

Determine whether draggable
item can be droppedC

426 CHAPTER 12

Dragging and dropping
Samples.CartZone.registerClass('Samples.CartZone, Sys.UI.Control,
 Sys.Preview.UI.IDropTarget);

You’re nearly done. Implementing drag and drop requires some effort, but in the
end you’ll have written code that can be easily modified and adapted to the majority
of drag-and-drop scenarios. The final step is to wire together DOM elements and cli-
ent controls to obtain a working example. That’s what you’ll do in the next section.

12.1.8 Putting together the pieces

Drum roll, please: You’re ready to test the shopping-cart example. In the code
downloadable at http://www.manning.com/gallo, we created an ASP.NET AJAX
CTP-enabled website and copied the code for the BookItem and CartZone con-
trols in two separate JavaScript files stored in the ScriptLibrary folder. Then, we
created a new ASP.NET page named BasicDragDrop.aspx and referenced the two
script files in the Scripts section of the ScriptManager control. Finally, we copied
the code shown in listing 12.6 in the page’s form tag.

<div id="cartZone" class="dropzone">

</div>

<script type="text/javascript">
<!--
 Sys.Application.add_init(pageInit);

 function pageInit(sender, e)
 $create(Samples.BookItem, {bookId: '1-933988-14-2'}, null,
 null, $get('imgBook'));
 $create(Samples.CartZone, null, null,
 null, $get('cartZone'));
 }
//-->
</script>

The code consists of some HTML markup and a JavaScript code block. The
markup code contains the DOM elements used to represent the book and the
shopping cart. The JavaScript code block contains the $create statements needed
to instantiate the BookItem and CartZone controls. As you can see, the two con-
trols are wired to the HTML elements that represent the book and the shopping

Listing 12.6 ASP.NET page for testing the drag-and-drop example

A drag-and-drop shopping cart 427
cart. You also set the bookId property of the BookItem instance to the ISBN code
of the book.

 As soon as the page is run, you can drag the book image over the shopping
cart. If you try to drop the book outside the cart, it returns to its original position.
If, on the other hand, you drop the book over the shopping cart, the operation
succeeds, and you get a message box displaying the drag data.

 You now possess the necessary skills—and code—to add drag-and-drop capa-
bilities to web pages using ASP.NET AJAX. Let’s take the drag-and-drop scenario a
step further. In the next section, you’ll see how to leverage it to take advantage of
the ASP.NET server-centric model and data-binding capabilities.

12.2 A drag-and-drop shopping cart

In the previous section, you built the client controls needed to perform drag and
drop with DOM elements in a web page. Now, you need to put together client
components and server controls to leverage the server-centric development
model offered by ASP.NET. With the server-centric model, you can build server
controls that are associated with client components. This way, you obtain ASP.NET
controls with rich client capabilities. With the techniques studied in chapter 9, it’s
easy to create an extender or a script control that programmatically instantiates in
the page the client component it needs and loads the necessary script files.

 In this section, you’ll combine server controls and client components to lever-
age the drag-and-drop scenario introduced in the previous section. The result,
shown in figure 12.7, will be a shopping cart system with drag-and-drop support,
built with the ASP.NET AJAX Extensions.

 The shopping-cart application features a catalog control that lists the books
available and a shopping cart control that displays information about the articles
you add. The user can add a book to the cart by clicking the Add To Cart button
displayed under the corresponding article. The button causes the shopping cart
to be updated and to display the title and quantity of each article. You can also
drag books from the catalog and drop them in the shopping cart. Once an article
is dropped, the shopping cart is updated accordingly. The final touch is using an
UpdatePanel control to update the shopping cart asynchronously, without need-
ing to reload the whole page.

 The full source code for the example is available for download at http://
www.manning.com/gallo, and it’s provided as an ASP.NET AJAX-enabled website.
We recommend that you look at it and, even better, follow the discussion with the
solution opened in Visual Studio. In the following sections, we’ll focus on the

428 CHAPTER 12

Dragging and dropping
application design strategies and the drag-and-drop implementation. For these
reasons, the listings contain only the relevant portions of the code.

 Let’s start with an overview of the logical layers that make up the ASP.NET web
application. Then, we’ll focus on some modifications you need to make to the
BookItem and the CartZone controls in order to take advantage of the server-cen-
tric model. Finally, we’ll concentrate on the Ajax-enabled controls that you’ll use
to represent the catalog and the shopping cart.

Figure 12.7 The drag-and-drop shopping cart running in Internet Explorer

A drag-and-drop shopping cart 429
12.2.1 Server-side design

The shopping-cart application is designed as a three-tier
application. This means server objects are organized
into three logical layers that communicate with one
another, as shown in figure 12.8. The presentation layer,
at the top, contains the controls responsible for render-
ing the UI and handling the user’s input and interac-
tions. The business layer consists of the server classes
that represent the entities involved in the application. In
the shopping-cart application, for example, you have a
Book class that represents a book article. The business
objects manipulate and process the data obtained
through the data access layer.

 Finally, the data access layer is used to access the data
store and to query, retrieve, and update the data. In the
example, the data store is an XML file, and the data
access layer is responsible for building business objects
from the raw XML data. These layers have a uniform
view of the data.

NOTE Designing an application using layers allows for modularity and code
reuse. You can find more information about this design pattern by brows-
ing the following URL: http://msdn2.microsoft.com/en-us/library/
ms978496.aspx.

Let’s see in more detail how we decided to implement the three layers that make
up the shopping-cart web application. We made some design decisions with sim-
plicity in mind, because our main goal is to focus on concepts. In real life, produc-
tion-quality code might require different and more complex strategies.

Data access layer
To keep things simple, we decided to use an XML file as the data store. The XML
file contains the catalog’s data as a set of book nodes contained into a root book
element. Listing 12.7 shows an excerpt from the BookCatalog.xml file, contained
in the App_Data folder of the sample website.

Application

Presentation Layer

Data Access Layer

Business Layer

Data

SQL

XML

Figure 12.8 Structure of a
typical layered application.
Layers form a chain and can
communicate with one
another.

http://msdn2.microsoft.com/en-us/library/ms978496.aspx
http://msdn2.microsoft.com/en-us/library/ms978496.aspx

430 CHAPTER 12

Dragging and dropping
<?xml version="1.0" encoding="utf-8" ?>
<books>
 <book>
 <id>0001</id>
 <title>AJAX In Action</title>
 <imageUrl>~/Images/crane_3d.gif</imageUrl>
 </book>
 <book>
 <id>0002</id>
 <title>iBATIS In Action</title>
 <imageUrl>~/Images/begin_3d.gif</imageUrl>
 </book>
</books>

Each book node contains an id element with the book ID, a title element that
contains the book’s title, and an imageUrl element with the path to the image
used in the catalog. Pretty simple, but it’s enough for our purposes.

Business layer
The business objects used in the
example are a Book class and a Shop-
pingCart class. The Book class imple-
ments an interface called IArticle,
which defines a set of properties com-
mon to generic articles or the catalog.
The ShoppingCart class implements
the IShoppingCart interface, which
defines a single method called Add,
used to add an article to the cart. Fig-
ure 12.9 shows the hierarchy of busi-
ness objects used in the example.

 To keep things simple, the business objects provider is implemented with a class
called BusinessLayer that exposes some static methods for accessing the XML file.
The GetBooks methods returns all the books in the catalog, and the GetBooksById
method returns the Book object corresponding to the given book’s ID.

Presentation layer
The presentation layer consists of two web user controls called Shopping-
Cart.ascx and BooksCatalog.ascx. The first control encapsulates the HTML and

Listing 12.7 The XML file used as the data store

IArticle

Book

IShoppingCart

ShoppingCart

Figure 12.9 Hierarchy of business objects used in
the drag-and-drop shopping cart example

A drag-and-drop shopping cart 431
the logic for the shopping cart. In it, a Repeater is bound to a collection of IArti-
cle objects to display the articles in the user’s shopping cart. The Shopping-
Cart.ascx control is an Ajax-enabled control because it’s associated with a client
component, the CartZone control that you coded in section 12.1.6. It imple-
ments the IScriptControl interface.

 The other control, BooksCatalog.ascx, encapsulates the logic for the catalog. It
contains a DataList control bound to the catalog through the BusinessLayer
class. It’s also an Ajax-enabled control because it associates an instance of the cli-
ent BookItem control built in section 12.1.4 with each item of the DataList. Each
item in the catalog becomes a draggable item. For this reason, the BooksCatalog
control implements the IScriptControl interface.

 The application design on the server side is completed, and the next step is to
work on the client side. You need to modify the JavaScript code for the BookItem
and CartZone controls to take advantage of the ASP.NET data-binding capabilities.

12.2.2 Client-side design

The client components used in this example are the BookItem and CartZone con-
trols you built in the first part of the chapter. To take advantage of ASP.NET’s data-
binding capabilities, we slightly modified the source for the BookItem control and
removed the bookId property. Because the book’s data can be bound to the
DataList control that renders the catalog, there’s no need to propagate it to the
client side. Instead, you need only a reference to the Add To Cart button. Then,
all you have to do is click the button programmatically using JavaScript. You don’t
need to duplicate the code needed to update the shopping cart.

 In the BookItem.js file contained in the ScriptLibrary folder, we replaced the
bookId property with a _addToCartElement member that stores a reference to the
Add To Cart button. Then, we exposed its value through an addToCartElement
property:

get_addToCartElement : function() {
 return this._addToCartElement;
},

set_addToCartElement : function(value) {
 this._addToCartElement = value;
}

The implementation of the onDragEnd method changes slightly because you want
to programmatically click the Add To Cart button as soon as a book image is
dropped over the shopping cart area. The new implementation of the onDragEnd

432 CHAPTER 12

Dragging and dropping
method always restores the original location of the book image, because you don’t
need to leave it over the shopping cart area. The code becomes the following:

onDragEnd : function(cancelled) {
 var element = this.get_element();
 Sys.UI.DomElement.setLocation(element,
 this._dragStartLocation.x, this._dragStartLocation.y);

 if (!cancelled) {
 this._addToCartElement.onclick();
 }
}

Now that we’ve discussed the design strategies for the shopping-cart application,
it’s time to go deep into the code and focus on the server controls and on the
data-binding logic. The main objective of the following discussion is to help you
understand how the BookItem and CartZone client controls are wired to the cata-
log and the shopping-cart controls in order to enable drag-and-drop support.

12.2.3 The ShoppingCart control

The ShoppingCart control represents a shopping cart. Its purpose is to display a
list of the articles added by the user during shopping. This is done with a Repeater
control that is bound to a list of IArticle objects, each one representing an article
added to the shopping cart. To provide drag-and-drop support, the shopping cart
control is wired to an instance of the CartZone client control. It becomes a drop
zone where you can drop books dragged from the catalog. Listing 12.8 shows the
markup code for the control, stored in the ShoppingCart.ascx template file.

<asp:Panel ID="shoppingCart" runat="server" CssClass="cart">
 <div class="header">
 Shopping Cart
 <div>Tip: Drag and Drop books over here!</div>
 </div>
 <asp:Repeater ID="repArticles" runat="server">
 <ItemTemplate>
 <div id="article">
 <asp:Label ID="lblQuantity" runat="server">
 <%# Eval("Quantity") %></asp:Label>

 <asp:Image ID="imgArticle" runat="server"
 Height="32" Width="32"
 ImageUrl='<%# Eval("ImageUrl") %>'
 ImageAlign="AbsMiddle" />

Listing 12.8 Code for the ShoppingCart.ascx file

Shopping
cart
containerB

Article
quantity

C

Article
image

D

A drag-and-drop shopping cart 433
 <asp:Label ID="lblDescription" runat="server">
 <%# Eval("Description") %></asp:Label>
 </div>
 </ItemTemplate>
 </asp:Repeater>
</asp:Panel>

The ItemTemplate of the Repeater contains a Label C that displays the quantity
of each book, an Image control D with a thumbnail of the book, and another
Label D with the book’s title. The containing control, a Panel B, defines the lay-
out of the shopping-cart control.

 As we said previously, the Repeater is bound to a list of IArticle objects, specifi-
cally instances of the Book class. The list is stored in a Session variable which is
accessible from the Cart property declared in the ShoppingCart.ascx.cs code-
behind file, as shown in listing 12.9. For simplicity, we decided to use a Session
variable to store the articles in the shopping cart. In a production scenario, a
more robust approach would be to serialize the collection and store it in a data-
base. Nonetheless, using a public property is a good choice to encapsulate the
logic that accesses the shopping-cart list, because it can be changed at any time
without affecting other parts of the code.

private List<IArticle> Cart
{
 get
 {
 List<IArticle> cart = Session["Cart"] as List<IArticle>;

 if (cart == null)
 {
 cart = new List<IArticle>();
 Session["Cart"] = cart;
 }

 return cart;
 }
}

Listing 12.9 Storing shopping-cart articles in a Session variable

Article description E

434 CHAPTER 12

Dragging and dropping
As we anticipated in section 12.2.2, the ShoppingCart class implements the
IShoppingCart interface, which defines a single method, Add. This method is
used to add an item to the cart, and its implementation is shown in listing 12.10.

public void Add(IArticle article)
{
 foreach (IArticle art in this.Cart)
 {
 if (art.Id == article.Id)
 {
 art.Quantity++;
 this.DataBind();
 OnArticleAdd(this, EventArgs.Empty);
 return;
 }
 }

 article.Quantity++;
 this.Cart.Add(article);
 this.DataBind();

 OnArticleAdd(this, EventArgs.Empty);
}

The Add method is called with an instance of IArticle as an argument (a Book
object in the example). If an article with the same ID is found, the article’s quantity
is incremented by one. Otherwise, the new article is added to the list and the
Repeater control is data-bound again to reflect the latest changes. In the last state-
ment, you call the OnArticleAdd method, which fires an event called ArticleAdd.
As you’ll discover later, this event is useful when you want to use an UpdatePanel
control to refresh the shopping cart without having to embed it in the user control.

IScriptControl implementation
Being an Ajax-enabled control, the ShoppingCart control implements the
IScriptControl interface. In chapter 9, we explained that this is required in
order to provide a list of script descriptors and script references to the ScriptMan-
ager control. In turn, the ScriptManager uses them to load the necessary script
files and to generate the $create statement that instantiates the client compo-
nents associated with the server control. In listing 12.11, you can see how the
IScriptControl interface is implemented by the ShoppingCart control.

Listing 12.10 IShoppingCart interface implementation

A drag-and-drop shopping cart 435
public System.Collections.Generic.IEnumerable<ScriptDescriptor>
 GetScriptDescriptors()
{
 ScriptBehaviorDescriptor desc = new
 ScriptBehaviorDescriptor("Samples.CartZone",
 shoppingCart.ClientID);

 yield return desc;
}

public System.Collections.Generic.IEnumerable<ScriptReference>
 GetScriptReferences()
{
 ScriptReference scriptRef = new
 ScriptReference(Page.ResolveClientUrl(
 ➥"~/ScriptLibrary/CartZone.js"));

 yield return scriptRef;
}

In the GetScriptDescriptors method, you return a single ScriptControlDe-
scriptor instance. This instance generates the $create statement that wires an
instance of the client CartZone control to the shopping cart’s container element.
The ID of the container element is returned by the control’s ClientID property.
Then, the ID is passed as an argument to the constructor of the ScriptControl-
Descriptor class.

 The GetScriptReferences method returns an instance of the ScriptRefer-
ence class that points to the CartZone.js file, located in the ScriptLibrary folder of
the sample website. This file contains the code for the CartZone client control
and is loaded in the page by the ScriptManager without the need to reference it
manually in the markup code.

 Now, let’s focus on the remaining control: the BooksCatalog user control. The
BooksCatalog control is the web user control responsible for rendering the cata-
log with the available books. You code it as a user control because you can define
a template for the UI using declarative code.

12.2.4 The BooksCatalog control

The catalog is represented by a Repeater control bound to a collection of Book
objects. The list of books is extracted from the XML file that acts as the local data

Listing 12.11 ShoppingCart: IScriptControl interface implementation

436 CHAPTER 12

Dragging and dropping
store. As we’ll explain in a moment, every item rendered by the Repeater is
associated with an instance of the client BookItem control. As a consequence, every
catalog item becomes a draggable item and can be dropped over the shopping cart.
Listing 12.12 shows the markup code for the control, stored in the
BooksCatalog.ascx template file.

<asp:DataList ID="listBooks" runat="server"
 RepeatDirection="horizontal"
 CellPadding="5"
 OnItemCommand="listBooks_ItemCommand"
 OnItemDataBound="listBooks_ItemDataBound"
 >
 <ItemTemplate>
 <div class="article">
 <asp:Label ID="lblTitle" runat="server"
 CssClass="title"><%# Eval("Title") %></asp:Label>

 <div class="image">
 <asp:Image ID="imgBook" runat="server"
 ImageUrl='<%# Eval("ImageUrl") %>'
 CssClass="draggable" />
 </div>

 <asp:Button ID="btnAddToCart" runat="server"
 Text="Add To Cart"
 CommandName="AddToCart"
 UseSubmitBehavior="false" />
 </div>
 </ItemTemplate>
</asp:DataList>

The Add To Cart button’s CommandName property is set to AddToCart. By subscrib-
ing to the ItemCommand event of the Datalist, you can intercept the Click event of
the button and execute the logic for adding the corresponding article to the
shopping cart. To retrieve the book’s ID, you store it in the CommandArgument
property of the Button control. This lets you retrieve the information about the
book on the server side, in the event handler for the ItemCommand event, as shown
in listing 12.13.

Listing 12.12 Markup code for the BooksCatalog user control

Add To Cart
button

A drag-and-drop shopping cart 437
protected void listBooks_ItemCommand(object sender,
 DataListCommandEventArgs e)
{
 if (e.CommandName == "AddToCart")
 {
 Button btnAddToCart =
 e.Item.FindControl("btnAddToCart") as Button;

 Book book =
 BusinessLayer.GetBookById(btnAddToCart.CommandArgument);

 shoppingCart.Add(book);
 }
}

The GetBookById method returns the Book object corresponding to the book
with the given ID. The book’s ID is stored in the CommandArgument property of the
Add To Cart button.

 Note that the BooksCatalog control encapsulates an instance of the Shopping-
Cart control. Because the ShoppingCart control implements the IShoppingCart
interface, the BooksCatalog knows how to call the Add method of the shopping
cart instance when a book must be added to the cart.

 The BooksCatalog control is an Ajax-enabled user control. Therefore, it imple-
ments the IScriptControl interface. The implementation in listing 12.14 shows
how you wire an instance of the client BookItem control to each one of the book
images rendered by the DataList encapsulated in the BooksCatalog control.

public IEnumerable<ScriptDescriptor> GetScriptDescriptors()
{
 List<ScriptBehaviorDescriptor> descriptors = new
 List<ScriptBehaviorDescriptor>();

 foreach (DataListItem item in listBooks.Items)
 {
 if (item.ItemType == ListItemType.Item ||
 item.ItemType == ListItemType.AlternatingItem)
 {
 Image imgBook = item.FindControl("imgBook") as Image;
 Button btnAddToCart = item.FindControl("btnAddToCart")
 ➥as Button;

Listing 12.13 Handling the ItemCommand event

Listing 12.14 BooksCatalog: IScriptControl interface implementation

438 CHAPTER 12

Dragging and dropping
 ScriptBehaviorDescriptor desc = new
 ScriptBehaviorDescriptor("Samples.BookItem",
 imgBook.ClientID);

 desc.AddElementProperty("addToCartElement",
 btnAddToCart.ClientID);
 descriptors.Add(desc);
 }
 }
 return descriptors.ToArray();
}

public IEnumerable<ScriptReference> GetScriptReferences()
{
 ScriptReference scriptRef = new
 ScriptReference(Page.ResolveClientUrl(
 ➥"~/ScriptLibrary/BookItem.js"));

 yield return scriptRef;
}

The GetScriptDescriptors method wires an instance of the BookItem control to
each of the DataList’s items, through a ScriptBehaviorDescriptor object B.
The book image becomes the associated element of the client control, and the cli-
ent ID of the Add To Cart button C is set as the value of the addToCartElement
property of the BookItem instance. As usual, the GetScriptReferences method
returns the URL of the BookItem.js file, which is saved in the ScriptLibrary folder
of the sample website and holds the code for the BookItem client control.

 With the BooksCatalog control, we’ve completed our overview of the shop-
ping-cart application. We examined its architecture and the client components
that provide the support for drag and drop. Then, we explained how to Ajax-
enable the catalog and the shopping-cart user controls to wire them to the Book-
Item and CartZone client controls. What remains is putting it all together in an
ASP.NET page in order to obtain a full working example.

12.2.5 Piecing it together

The Default.aspx page of the sample website is where all the server controls are
wired together. The page hosts the BooksCatalog and ShoppingCart user controls.
Notably, the controls are wrapped by two UpdatePanels declared in the page. This
way, the partial rendering can be controlled globally from the hosting page.

Client control’s
associated
elementB

Client ID of Add
To Cart button C

A drag-and-drop shopping cart 439
Furthermore, you have a central place to enable or disable the partial-rendering
feature. Even if partial rendering is disabled, the shopping cart continues to work
by making full postbacks instead of partial ones. The relevant code is contained in
the Default.aspx.cs code-behind file and is shown in listing 12.15.

protected void Page_Load(object sender, EventArgs e)
{
 listBooks.ShoppingCart = shoppingCart;

 shoppingCart.ArticleAdd +=
 ➥new EventHandler(shoppingCart_ArticleAdd);

 if (!Page.IsPostBack)
 {
 List<Book> books = BusinessLayer.GetBooks();

 listBooks.DataSource = books;
 listBooks.DataBind();
 }
}

void shoppingCart_ArticleAdd(object sender, EventArgs e)
{
 UpdatePanel2.Update();
}

In the Page_Load method, you wire the BooksCatalog control B with the Shop-
pingCart control. This enables the BooksCatalog control to call the Add method
of the ShoppingCart instance when needed. Then, you subscribe to the Arti-
cleAdd event C raised by the ShoppingCart control whenever an article is added
to the cart, as shown in listing 12.8. In the event handler E, you manually update
the UpdatePanel that wraps the ShoppingCart control, to display the updated
cart. This is necessary because the Repeater in the ShoppingCart control is auto-
matically data bound every time an article is added to the shopping cart. Finally,
when the page is loaded for the first time, you initialize the catalog by getting the
list of books and binding it to the BooksCatalog control D.

Listing 12.15 Code for the Default.aspx page, which hosts the Ajax-enabled controls

Wire ShoppingCart to
BooksCatalog controlB

Detect when
article is added
to shopping cartC

Data bind
BooksCatalog
control on first load

D

Update ShoppingCart
controlE

440 CHAPTER 12

Dragging and dropping
12.3 Summary

The ASP.NET Futures CTP provides a drag-and-drop engine that you can use to
add drag and drop to web pages. Typically, drag and drop in web pages is imple-
mented with draggable items (DOM elements that can be dragged around the
page) and drop targets (elements that allow draggable items to be dropped onto
their area).

 You can easily implement draggable items and drop targets as Microsoft Ajax
components that implement the IDragSource or IDropTarget interface in order
to receive feedback from the DragDropManager, a global JavaScript object that
coordinates a drag-and-drop operation.

 In this chapter, you’ve seen how to implement a scenario involving a drag-and-
drop shopping cart. In the first example, you implemented it using a pure client-
centric model. Then, you took advantage of the data-binding capabilities of ASP.NET
server controls and implemented the scenario using a server-centric model.

 In the next chapter, you’ll see how to implement common Ajax patterns with
ASP.NET AJAX.

Part 4

Mastering ASP.NET AJAX

You’ve come to the end of the book, and you possess a deep knowledge
of ASP.NET AJAX. It’s time to apply your skills to implement some of the most
common Ajax patterns. Part of chapter 13 is dedicated to implementing
development patterns, such as writing debug versions of JavaScript files. The
rest of the chapter shows how to implement patterns such as unique URLs,
widgets, and client-side data binding. In this chapter, you’ll combine the cli-
ent-centric and server-centric models and use both the ASP.NET AJAX 1.0 fea-
tures and the ASP.NET Futures.

Implementing
common Ajax patterns
In this chapter:
■ Guidelines for developing debug and release

versions of script files
■ Helpers for automating the creation of client

properties and events
■ Unique URLs and logical navigation
■ Declarative data binding
■ Declarative widgets
443

444 CHAPTER 13

Implementing common Ajax patterns
Ajax applications have changed the way users interact with web pages. With Ajax,
you can process a form in the background and eliminate page refreshing. In this
way, the user interface remains responsive while input is being processed. Eventu-
ally, developers realized that Ajax introduced the need to handle new develop-
ment scenarios. For example, how do you keep the user informed about what’s
happening in the background? What’s the best strategy to perform data access on
the client side?

 To use Ajax, we need to develop new design patterns for web pages. Many pat-
terns have been defined and catalogued, and many are being defined every day, as
developers continue to experiment with Ajax and use it in production scenarios.

 Covering every Ajax pattern would require a dedicated book, but we discussed
some patterns in previous chapters. In this final chapter, we’ve picked some more
patterns and implemented them with ASP.NET AJAX. The first half of the chapter
explores coding patterns and how they help you write JavaScript code that is easier
to debug and maintain. Then, we’ll address the problem of the broken Back but-
ton. Finally, we’ll show you how to implement client-side data binding and how to
build draggable widgets using features available in the ASP.NET Futures package.

13.1 Script versioning

Embracing Ajax as your primary development technique for web applications
involves writing a lot of JavaScript code. Many tasks that were previously accom-
plished on the server side can now be performed using JavaScript on the client
side. As a consequence, the script files get bigger as you add functionality to a web
application. In addition, client objects are often responsible for performing data
access, as well as elaborating the results and displaying data to the user. For this
reason, debugging the client code becomes a necessary and fundamental task for
every Ajax developer.

 In chapter 2, we discussed client-side debugging and mentioned a feature of
ASP.NET AJAX called script versioning. Thanks to script versioning, you can have
debug and release versions of the same JavaScript file. In the following sections,
we’ll present guidelines for how to write the JavaScript code in the debug version
of a script file. This will greatly improve your debugging experience and let you
easily debug client code using one of the tools available, such as those discussed in
appendix B.

Script versioning 445
13.1.1 Getting informative stack traces

When you want to define a method in a JavaScript object, you usually do so by
assigning a function to a property of the object. Recall from chapter 3 that func-
tions assigned to properties of an object can be invoked using the name of the
property. For this reason, there’s no need to specify a name for the function,
which can be declared anonymous. You can see this in listing 13.1, which defines a
Person class using the Microsoft Ajax Library:

function Person() {
 this._name = '';
}
Person.prototype = {
 get_name : function() {
 return this._name;
 },

 set_name : function(value) {
 this._name = value;
 }
}
Person.registerClass("Person");

In this listing, the functions assigned to the get_name and set_name properties
have no name: They’re anonymous functions. This isn’t a big deal, because you
can invoke the function through the name of the property:

var person = new Person();
person.set_name('Joe');

As a consequence, omitting the function names reduces the code size and makes
it more readable. On the other hand, there’s a price to pay. For example, a debug-
ger can’t prompt an informative stack trace if the code fails in an anonymous
function. As a consequence, the stack trace will show a series of calls to functions
with blank names, as in figure 13.1. This isn’t what we would call a helpful debug-
ging experience.

 To work around this problem, you can take advantage of the script-versioning
technique provided by the Microsoft Ajax Library. You need to build a debug ver-
sion of the script file where all the functions are declared with a name. This makes

Listing 13.1 Using anonymous functions to declare methods of an object

446 CHAPTER 13

Implementing common Ajax patterns
the code more verbose and less readable, but you can inspect the stack trace in
your favorite JavaScript debugger with a simple two-step process:

1 Declare all the functions as global named functions in the debug version of
the script file.

2 In the prototype object, define an alias for the corresponding function.

Listing 13.2 shows how the client Person class looks if you take this approach.

function Persongetname() {
 return this._name;
}

function Personsetname(value) {
 this._name = value;
}

function Person() {
 this._name = '';
}
Person.prototype = {
 get_name : Persongetname,

 set_name : Personsetname
}
Person.registerClass("Person");

The instance methods are first defined as global named functions. To better rec-
ognize the constructor to which they belong, you concatenate the constructor
name with the name of the method, using a $ character. This is the same approach
used in the debug versions of the Microsoft Ajax Library files, but you’re free to
leverage your preferred naming technique. Finally, the functions are referenced

Listing 13.2 A debug version of the Person class

Figure 13.1
The Call Stack window of
the Visual Studio Debugger

Script versioning 447
in the prototype object of the Person constructor by assigning them to the
get_name and set_name properties. Methods are invoked in the same way as
before, but a debugger can display a more informative stack trace, as shown in fig-
ure 13.2.

NOTE You may wonder why you need to declare the instance methods as global
functions. Couldn’t you assign a name to the functions in the prototype
object? Although the majority of ASP.NET AJAX supported browsers
would be happy, at present the Safari browser would complain and refuse
to parse the code.

Now that you know how to obtain a more informative stack trace, the second tech-
nique that we’ll illustrate involves adding comments to the code. As we’ll see, the
Microsoft Ajax Library allows commenting the JavaScript code using a syntax sim-
ilar to the one supported by the C# and VB.NET languages.

13.1.2 XML comments in JavaScript code

Often, you can distinguish between good and poorly written code by looking at
comments. If code is well commented, developers who consume it get a clearer
vision of the coder’s work. As result, they can read, use, and maintain it without
much effort. Shipping uncommented code can reward developers—even those
who wrote the code—with daily headaches.

 Beside the good old inline comments, languages such as C# and VB.NET let
you document classes and their properties, methods, and events. You do so with
an XML syntax that can be added before the declaration of a class or one of its
members. Tools can then generate documentation based on these comments. For
example, the IntelliSense tool in Visual Studio can use this documentation system
to generate documentation on the fly, as soon as you type the code.

 The Microsoft Ajax Library provides a similar technique on the client side, let-
ting you add comments to JavaScript classes, properties, and methods. In a way

Figure 13.2
Using named functions in the
debug version of a script file
lets you display a more
informative stack trace.

448 CHAPTER 13

Implementing common Ajax patterns
similar to what happens with server-side
classes, XML comments enable the use of
the IntelliSense tool even in custom Java-
Script files, with custom JavaScript
objects. Figure 13.3 shows how the new
IntelliSense works in a JavaScript file, in
the new version of Visual Studio (code-
name Orcas).

 To see how XML comments work in
JavaScript, listing 13.3 shows how you
can add comments to the Person class
defined in listing 13.1, with the help of
the Microsoft Ajax Library.

function Person() {
 ///<summary>
 ///This class describes a person.
 ///</summary>

 this._name = '';
}
Person.prototype = {
 get_name : function() {
 ///<summary>
 ///Returns the name of the person.
 ///</summary>

 return this._name;
 },

 set_name : function(value) {
 ///<summary>
 ///Sets the name of the person.
 ///</summary>
 ///<param name="value" type="String">
 ///The name of the person.
 ///</param>

 this._name = value;
 }
}
Person.registerClass("Person");

Listing 13.3 Adding XML comments to a JavaScript client class

Figure 13.3 The IntelliSense tool in
Visual Studio Orcas can show properties
of JavaScript objects.

Script versioning 449
Notice that you can add XML comments in a constructor, a property, or a method
declaration. This is different from what happens on the server side, where XML
comments are added outside an entity declaration. Other than this difference, the
syntax used for the client-side comments is similar to that leveraged by the .NET
framework on the server side.

NOTE You can find a description of the XML tags available in the .NET frame-
work documentation engine at http://msdn2.microsoft.com/en-us/
library/b2s063f7.aspx.

The example uses the summary tag to provide a description of the client class and
its method. The get_name and set_name methods are the getter and setter for the
client name property. Note that in the setter, a param tag describes the parameter
accepted by the set_name method. The attributes of the param tag are the same as
those used in parameter descriptors, which we’ll discuss in section 13.1.4.

 Figure 13.4 shows how the XML comments added to the Person class enhance
the coding experience thanks to the new IntelliSense features available in Visual
Studio Orcas.

 Before we complete our discussion of how to take advantage of script version-
ing, let’s see how you can enhance the debug version of a script file by performing
validation on the parameters passed to JavaScript methods.

13.1.3 Validating function parameters

JavaScript doesn’t perform any kind of validation on the parameters passed to a
method. Despite what happens in strongly typed languages like C# or VB.NET,
where checks are performed at compile time, there’s no guarantee that the
parameters you receive in a method are of the expected type. There could also be
fewer or more than the expected number.

Figure 13.4
XML Comments added to custom
JavaScript objects are used by the
IntelliSense tool in Visual Studio Orcas.

http://msdn2.microsoft.com/en-us/library/b2s063f7.aspx
http://msdn2.microsoft.com/en-us/library/b2s063f7.aspx

450 CHAPTER 13

Implementing common Ajax patterns
For example, consider a JavaScript function called add, which is supposed to
return the sum of the two arguments it accepts:

function add(a, b) {
 return a + b;
}

If the parameters a and b are numbers, everything goes as expected. But what
happens if you pass strings instead of numbers? In this case, the + operator is
interpreted as the string-concatenation operator, and the function returns the
string resulting from the concatenation of the strings passed as arguments. The
function’s code doesn’t raise any errors; it just returns an unexpected result.
Finally, if you pass arbitrary arguments to the function, such as a Boolean and a
string, a JavaScript error is raised at runtime.

 Even if you can’t prevent runtime errors from being raised, you can detect
errors in the method and avoid returning unexpected results. An interesting fea-
ture introduced by the Microsoft Ajax Library is the ability to validate the parame-
ters passed to a method. You can perform parameter validation through a method
called Function._validateParams.

WARNING Because Function._validateParams is declared as a private method,
we feel the need to add a disclaimer that says “use at your own risk.” Used
properly, this method can be a great help in some scenarios. We hope
that the Function._validateParams method will become a publicly
accessible method in the next release of the Microsoft Ajax Library.

To illustrate how the method works, let’s rewrite the add function to ensure that
you operate on the right parameter types (see listing 13.4).

Listing 13.5
function add(a, b) {
 var e = Function._validateParams(arguments,
 [
 {name:"a", type:Number, mayBeNull:false, optional:false},
 {name:"b", type:Number, mayBeNull:false, optional:false}
]
);

 if(e) throw e;

 return a + b;
}

Listing 13.4 Validating the parameters passed to a JavaScript function

Script versioning 451
The Function._validateParams method is called just after the function declara-
tion, and its result is stored in the e variable. The first argument passed to the
method is a variable called arguments; This is a special variable defined by Java-
Script and accessible only in a function. The arguments variable holds a list of all
the arguments passed to the function.

 The first argument passed to Function._validateParams is the list of method
parameters to validate; these are the parameters passed to the add function when
it’s called. The second argument passed to Function._validateParams is an
array containing two objects that act as parameter descriptors. Note that parame-
ter descriptors are associated with method parameters in the same order they’re
stored in the arguments variable: The first descriptor is associated with the first
parameter passed to the function, and so on.

 Each descriptor describes a particular parameter by specifying a list of require-
ments that it must meet. These requirements are represented by properties of the
object. For example, look at the first parameter descriptor supplied:

{name:"a", type:Number, mayBeNull:false, optional:false}

The name property contains a string with the parameter name. If the validation
fails, you can access the name of the parameter through the Error object. The
second property, type, puts a constraint on the type of the parameter. In this case,
you mandate that the a parameter is of type Number. The third property, mayBe-
Null, determines whether you can pass null as the value of the argument. If the
property is set to false, you can’t pass null as the value for the a parameter. The
last property, optional, specifies whether the parameter is mandatory. If you set
the property to false, the caller must supply at least one parameter, because
you’re dealing with the first parameter descriptor.

 The properties illustrated in the previous example aren’t the only ones available.
Table 13.1 lists the properties you can declare in a parameter descriptor.

Table 13.1 Properties used in parameter descriptors

Property Description

type The expected type of a parameter. The possible values are String,
Number, Array, Function, and Object.

mayBeNull If true, the parameter can be null.

optional If true, the parameter can be omitted.

integer If the parameter is a Number, specify if it must be an integer.

452 CHAPTER 13

Implementing common Ajax patterns
As we said previously, the return value of Function._validateParams is stored in
the e variable. If the validation fails, the e variable contains an Error object with
the information about the parameter that caused the error. The second statement
in the add function in listing 13.4 raises a client exception if the validation fails:

if(e) throw e;

If the validation succeeds, Function._validateParams returns null, and the
code in the body of the method is executed normally.

 The Function._validateParams method is considered private because the
name of the function starts with an underscore, which is a convention used by
JavaScript developers to denote a function or member with private scope. The
method is used internally by the Microsoft Ajax Library to help debug script files
by validating the parameters passed to a method on every call. All calls to the
Function._validateParams method are present only in the debug versions of the
Microsoft Ajax Library files and are removed when in release mode.

 This is done because the validation procedures are expensive in terms of state-
ments executed. For example, validating the parameters of a method that is 5
statements long can result in 100 statements being executed at runtime, due to
the execution of the internal validation routines. Abusing this function can result
in a significant performance drop.

 However, the Function._validateParams function and all its associated inter-
nal methods are defined in the release version of the library files. In the next sec-
tion, we’ll discuss a couple of scenarios for using parameter validation in
production code.

13.1.4 Parameter validation in production code

Using the Function._validateParams method to validate parameters whenever a
function is called is expensive in terms of performance. You should use this

elementType If a parameter is an Array, specify the expected type for its elements. The
possible values are the same as for the type property.

elementMayBeNull If a parameter is an Array, specify if it can contain null elements.

elementInteger If a parameter is an Array, specify if its elements are integers.

domElement If true, the parameter must be a DOM element.

Table 13.1 Properties used in parameter descriptors (continued)

Property Description

Script versioning 453
method only in the debug versions of script files; but in a couple of scenarios, this
method can be useful in production code.

 The first scenario involves type checking at runtime. Suppose you want to cre-
ate a dynamic array that accepts only strings. On the server side, you have strongly
typed collections to accomplish this task. On the client side, you can achieve
something similar is by using Function._validateParams as shown in listing 13.5.

Type.registerNamespace('Samples');

Samples.StringCollection = function() {
 this._innerList = [];
}
Samples.StringCollection.prototype = {
 add : function(value) {
 var e = Function._validateParams(arguments,
 [
 {name: "value", type:String, mayBeNull:false,
 optional:false}
]);

 if(e) throw e;

 this._innerList.push(value);
 }
}
Samples.StringCollection.registerClass("Samples.StringCollection");

You create a StringCollection object that wraps a JavaScript array. You want to allow
only strings to be added to the array. To do that, call the Function._vali-
dateParams method in the add method, which is used to add an element to the col-
lection. The parameter descriptor for the value parameter mandates that it’s of
type String, and not null; and the value parameter can’t be omitted. This ensures
that only strings are added to the inner array. For simplicity, the code in listing 13.5
contains a single add method, but you can add more methods to simulate strongly
typed collections in JavaScript.

 Another interesting use of the Function._validateParams method ensures
that required references are set before the initialization of a client component. In
listing 13.6, the Function._validateParams method is used in the initialize
method of a SomeControl control that is supposed to hold a reference to a DOM
element called childElement. You ensure that the reference has been set cor-
rectly (for example, through a property) before the control is initialized.

Listing 13.5 A StringCollection object in JavaScript

454 CHAPTER 13

Implementing common Ajax patterns
Samples.SomeControl.prototype = {
 initialize : function() {
 Samples.SomeControl.callBaseMethod(this, 'initialize');

 var e = Function._validateParams(
 [this._childElement],
 [
 {name:"childElement", mayBeNull:false, optional:false,
 isDomElement:true},
]);

 if(e) throw e;

 // Initialization code continues here.
 }
}

The reference stored in the _childElement field is validated using the Func-
tion._validateParams method. To validate a DOM element, the corresponding
parameter descriptor has the isDomElement property set to true. If the validation
succeeds, you can safely execute the initialization code for the control.

 Let’s continue discussing production code. In production, the script files are
usually served to browsers using various kinds of network connections. To achieve
a reasonable loading time even with slow clients, you need to minimize the size of
the script files downloaded by the browser. Even if the browser can cache script
files, you must seriously take into account first-time loading and empty caches.
There’s no point in forcing users to wait while a script file is being downloaded
just because you added 10 KB of XML comments that users will never see. In the
following section, you’ll learn how to reduce the loading times of script files
served using the ASP.NET AJAX ScriptResource handler.

13.1.5 Compressing and crunching script files

With ASP.NET AJAX, you can take advantage of the compression and crunching
capabilities provided by the ScriptResource.axd HTTP handler. This handler is
responsible for serving the JavaScript files embedded as web resources in separate
assemblies. When a script file is requested through the handler (for example, by
loading it through the ScriptManager control), the file is compressed and
crunched before being sent to the browser. Crunching is the process of stripping
all the comments and whitespace from the script file, to reduce its size. With com-
pression, size is further reduced thanks to compression algorithms.

Listing 13.6 Validating references in the initialization code

Helpers, help me help you! 455
 To activate compression and crunching, you have to modify some attributes in
the website’s web.config file. You do this by inserting the following code in the
system.web.extensions element of the web.config file:

<system.web.extensions>
 . . .
 <scripting>
 <scriptResourceHandler enableCompression="true"
 enableCaching="true" />
 </scripting>
 . . .
</system.web.extensions>

You need to set the enableCompression attribute of the scriptResourceHandler
element to true if you want to activate compression of script files served through
the ScriptResource.axd HTTP handler. You can also set to true the enableCach-
ing attribute if you want to cache the served script files in the browser.

 The techniques illustrated so far should be used when you’re developing
debug and release versions of script files. In a debug configuration, it’s a good
choice to pay the price of an increased file size and slower performance to take
advantage of stack traces, XML comments, and parameter validation. When you’re
dealing with production code, your goals should be obtaining the fastest possible
code and decreasing file sizes as much as possible.

 Let’s move to other kinds of coding patterns. Our next objective is showing
what you gain and what you lose when you decide to tweak the Microsoft Ajax
Library to automate common programming tasks.

13.2 Helpers, help me help you!

Ajax applications usually need to download a significant number of kilobytes of
JavaScript code to the browser. Even if the browser’s cache can speed up the load-
ing time of an Ajax-enabled web page, size matters for script files. Shorter script
files lead to faster loading times, especially when you visit a website for the first time.

 In the previous section, we explained how to take advantage of compression
and crunching when you use ASP.NET AJAX to serve script files. In this section,
you’ll further decrease the size of your JavaScript files by extending the Microsoft
Ajax Library. The objective is to reduce the quantity of JavaScript code needed to
perform common tasks when creating client objects. You’ll write two helpers
(methods that help you perform a particular task) for declaring properties and
events in JavaScript objects using a single statement. The rewards will be increased
productivity, shorter script files, and a lot of saved keystrokes.

456 CHAPTER 13

Implementing common Ajax patterns
13.2.1 Automating the declaration of properties

If you read chapter 3, you should be aware that you can expose properties in Java-
Script objects. Properties are nothing more than methods that act as the getter
and setter for a particular value stored in an object. If you look at some of the list-
ings in this book, you’ll notice that declaring a property is expensive in terms of
lines of code written. This is true especially when you use properties to expose the
value of private members without performing any additional logic. This situation
is shown in listing 13.7, which reports the code for a property called someProp-
erty, declared in the prototype of a client class called someClass.

someClass.prototype = {
 get_someProperty : function() {
 return this._someMember;
 },

 set_someProperty : function(value) {
 this._someMember = value;
 }
}

Although declaring a single property has no impact on the size of a script file, in
some situations an object exposes many properties. This can be a concern
because the size of the script can increase significantly.

 Let’s automate the process of declaring a simple property like the one shown
in listing 13.7. The goal is to both reduce the size of the resulting script and save
precious keystrokes. Listing 13.8 shows the code needed to declare a helper
method called createProperty, which performs this task.

Type.prototype._createGetter = function(fieldName) {
 return function() {
 return this[fieldName];
 }
}

Type.prototype._createSetter = function(fieldName) {
 return function(value) {
 this[fieldName] = value;
 }
}

Listing 13.7 A simple property declared in a client class

Listing 13.8 Code for automating the creation of a simple property

Helpers, help me help you! 457
Type.prototype.createProperty = function(propName) {
 var fieldName = '_' + propName;

 var getter = this._createGetter(fieldName);

 var setter = this._createSetter(fieldName);

 this.prototype['get_' + propName] = getter;
 this.prototype['set_' + propName] = setter;
}

The previous code extends the Microsoft Ajax Library by adding functions to the
Type.prototype object. As we explained in chapter 3, Type is an alias for the built-
in Function object. Because client classes are JavaScript functions, you’re provid-
ing new static methods to all the client classes.

 The first two methods, _createGetter and _createSetter, are supposed to be
private methods used by the createProperty helper. Their purpose is to return a
closure with the code for the property’s getter and setter. Closures are functions
that can be bound to the local variables of the parent functions in which they’re
declared, as we explained in section 3.1.3.

 You declare a property with the createProperty method. It calls the
_createGetter and _createSetter methods and assigns the returned functions
to the prototype of the client class from which you call createProperty. Note that
it’s not necessary to declare a private field in the constructor; the helper creates
the field by adding an underscore character to the property name. Finally, the get-
ter and setter methods are added as properties of the prototype object using the
naming convention for properties introduced in section 3.3.3.

 With the new createProperty method, adding properties to a class is easy. List-
ing 13.9 demonstrates by declaring a class called Samples.Customer that exposes
three properties: fullName, address, and city.

Type.registerNamespace("Samples");

Samples.Customer = function() {
}
Samples.Customer.createProperty("fullName");
Samples.Customer.createProperty("address");
Samples.Customer.createProperty("city");

Samples.Customer.registerClass("Samples.Customer");

Listing 13.9 Creating client properties with the createProperty method

458 CHAPTER 13

Implementing common Ajax patterns
Properties are declared after the Samples.Customer constructor by calling the
createProperty method on the constructor. The createHelper method accepts
a string with the name of the property as an argument. As we mentioned previ-
ously, an interesting side effect of createProperty is that private fields are
implicitly created by the _createSetter function when the following statement
is executed:

this[fieldName] = value;

In this case, trying to access the fieldName variable on the current instance causes
the field to be created if it doesn’t exist. By convention, private fields are created
by prefixing the name of the property with the underscore character.

 You’ve reached your first goal toward reducing the number of statements in a
JavaScript file. With the createProperty method, you can declare a private field
and the corresponding property with a single statement. Now, it’s time to auto-
mate the creation of client events.

13.2.2 Automating the creation of events

In section 3.7, we explained how to expose events in client objects. Recall that
exposing an event requires writing methods for adding and removing an event
handler, as well as a method for raising the event. This significantly increases the
number of statements required to declare a single event in a client object. In
chapter 3, you mitigated this issue by declaring a single method that can raise a
generic event, given the event name and the event arguments.

 In this section, you want to expose a client event using a single JavaScript state-
ment. You’ll create a helper method called createEvent, in a manner similar to
what you did in the previous section with the createProperty method. Let’s start
by looking at the code, which is shown in listing 13.10.

Type.prototype._createAddHandler = function(eventName) {
 return function(handler) {
 this.get_events().addHandler(eventName, handler);
 }
}

Type.prototype._createRemoveHandler = function(eventName) {
 return function(handler) {
 this.get_events().removeHandler(eventName, handler);
 }
}

Listing 13.10 Automating the creation of a client event

Helpers, help me help you! 459
Type.prototype.createEvent = function(eventName)
{
 var addHandler = this._createAddHandler(eventName);
 var removeHandler = this._createRemoveHandler(eventName);

 this.prototype['add_' + eventName] = addHandler;
 this.prototype['remove_' + eventName] = removeHandler;

 if(!this.__events) {
 if(!this.inheritsFrom(Sys.Component)) {
 this.prototype.get_events = function() {
 if (!this._events) {
 this._events = new Sys.EventHandlerList();
 }

 return this._events;
 }
 }

 this.prototype._raiseEvent = function(
 ➥eventName, eventArgs) {
 var handler = this.get_events().getHandler(eventName);

 if (handler) {
 if (!eventArgs) {
 eventArgs = Sys.EventArgs.Empty;
 }

 handler(this, eventArgs);
 }
 }

 this.__events = true;
 }
}

The code is structured in a manner similar to listing 13.8 for client properties. The
functions declared in the code act as static methods that can be called from the cli-
ent object that wants to expose an event. The first two methods, _createAddHandler
and _createRemoveHandler, return the functions responsible for adding and
removing an event handler. The code for these functions is the same that you wrote
in section 3.7.1, when we discussed how to expose an event in a JavaScript object.

 The createEvent method uses _createAddHandler and _createRemoveHan-
dler to inject the returned functions in the prototype of the object. B The
injected methods follow the naming convention for events that we introduced in
section 3.7.1.

Add methods
for managing
event
handlers

B

Set up events
for generic

objects

C

Add method for
raising generic

event

D

460 CHAPTER 13

Implementing common Ajax patterns
 Then, the createEvent method checks whether the client object is a client com-
ponent created with the Microsoft Ajax Library or just a JavaScript object. As you
know, client components come with an instance of the Sys.EventHandlerList class
stored in a private _events member. This instance, which is needed to manage
event handlers, is returned by a public method called get_events, exposed by the
base Sys.Component class. If you’re dealing with a simple JavaScript object, you
need to C declare the _events variable as well as the get_events method.

 Finally, D createEvent injects the _raiseEvent method in the prototype
object. As you know from section 3.7, this method can raise a generic event
exposed in the client object. All you have to do to raise an event is pass in the
event name and the event arguments to the _raiseEvent method.

 With the new createEvent helper, exposing client events is fast and easy. For
example, you can create a customerInitialized event in the Samples.Customer
class with the following code:

Type.registerNamespace("Samples");

Samples.Customer = function() {
 // Declare class members.
}
Samples.Customer.createEvent("customerInitialized");

Samples.Customer.registerClass("Samples.Customer");

The createEvent method is called just after the constructor as a static method of
the Samples.Customer class. To raise the customerInitialized event, you can
call the _raiseEvent method anywhere in an instance method, like so:

this._raiseEvent("customerInitialized");

Finally, an external object can subscribe to the event as usual, by passing an event
handler to the add_customerInitialized method:

var customer = new Samples.Customer();
customer.add_customerInitialized(myEventHandler);

function myEventHandler(sender, e) {
 // Handle the event.
}

In the same manner, you can call the remove_customerInitialized method to
remove an event handler added with add_customerInitialized. The nice thing
is that all these methods are automatically created by the createEvent helper
based on the name of the event passed as an argument to the method. You save
plenty of keystrokes while decreasing the number of statements and the size of the
script file that hosts the client object.

Logical navigation and unique URLs 461
 Now, we’ll abandon coding patterns and implement some of the most com-
mon Ajax design patterns. We’ll start with an implementation of the logical navi-
gation and unique URLs patterns. Then, we’ll examine client-side data binding
and draggable widgets.

13.3 Logical navigation and unique URLs

Ajax applications are frequently praised for the richness they provide. Users have
come to expect pages that are interactive, fluid, and more responsive than tradi-
tional websites. Now that these pages have become a reality, a few of the features
you’ve taken for granted in traditional web applications are missing or perceived
as broken.

 A frequent remark about Ajax applications is that the browser Back and For-
ward buttons no longer function as expected. Take, for example, the Google
Maps (http://maps.google.com) and Windows Local Live (http://local.live.com)
sites. Each of these web applications provides an interactive map, which the user
can manipulate by clicking and dragging the mouse over the surface. As data is
retrieved seamlessly in the background, the UI is dynamically updated to reflect
the movements made with the mouse. Changes are made to the page and its
appearance, but no items are entered into the browser’s history record—so the
next time the user clicks the Back button, they aren’t taken to an earlier version of
the map (before the dynamic updates began). Instead, they’re redirected away
from the map page to the page or site that was previously viewed in the browser.

 Another missing or broken characteristic that is often observed with Ajax appli-
cations is the inability to bookmark a version of a page after making significant
updates to its state and appearance. Imagine going through the steps of finding
your home or work address on Google Maps and then bookmarking the page in the
browser. The next time the bookmark is restored from the browser, you under-
standably expect the state of the page to be similar to the way it was when you added
the bookmark. The reality is that the page is rejuvenated to its original state, before
any user interactions user began.

 Ajax applications inherently behave differently than traditional applications
because they don’t perform the same actions. They don’t perform a full page
refresh when application updates are made, so no entry is made in the browser
history. They also don’t provide unique URLs when a page is updated, so book-
marks aren’t aware of changes made to the application and its state. These intrin-
sic qualities present challenges for Ajax developers. Providing support for such
innate browser activities will enhance your Ajax applications.

http://local.live.com
http://local.live.com
http://local.live.com

462 CHAPTER 13

Implementing common Ajax patterns
13.3.1 Logical navigation

The term logical navigation refers to the possibility of associating multiple logical
views with the same page. Consider the UpdatePanel server control in ASP.NET
AJAX: With its support on a page, you can show variations of the same interface
without the price of reloading the entire page. Each page variation can be per-
ceived as a separate logical view. Implementing logical navigation means offering
the user the ability to navigate between views (or variations) with the browser’s
Back and Forward buttons.

 Support for the logical navigation pattern, often referred to as Back button
support, is presented in the form of a History control.

History control
Debuting in the May 2007 release of ASP.NET Futures is a control called History.
This control, which provides server-side and client-side support, lets you manage
browser history during asynchronous updates on a page. We’ll begin our explora-
tion of this control by investigating how you can apply it in a server-centric solution.

NOTE The previous two chapters, and the third part of the book, are solely ded-
icated to features in the ASP.NET Futures CTP. We’re discussing the His-
tory control here instead because its use is more applicable to Ajax
patterns and the topic of this chapter.

To use the controls in ASP.NET Futures, first create a new website and select the
ASP.NET Futures AJAX Web Site option in the New Web Site dialog (see figure 13.5)
in Visual Studio.

 Selecting this option adds a reference to the Microsoft.Web.Preview.dll assem-
bly that contains the controls and other features in the library. In addition, an
update to the web.config file includes the tag mappings to the new controls:

<pages>
 <controls>
 <add tagPrefix="asp" namespace="System.Web.UI"
 assembly="System.Web.Extensions,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35"/>
 <add tagPrefix="asp" namespace="Microsoft.Web.Preview.UI"
 assembly="Microsoft.Web.Preview"/>
 <add tagPrefix="asp"
 namespace="Microsoft.Web.Preview.UI.Controls"
 assembly="Microsoft.Web.Preview"/>
 ...

Logical navigation and unique URLs 463
For this exercise, you’ll update an application that uses the UpdatePanel control
to dynamically render the page with different views of RSS feeds. Listing 13.11
illustrates the markup portion of the application prior to any updates made with
the History control.

<%@ Register Assembly="RssToolkit, Version=1.0.0.1, Culture=neutral,
 PublicKeyToken=02e47a85b237026a"
 Namespace="RssToolkit" TagPrefix="rssToolkit" %>

…

<asp:ScriptManager ID="ScriptManager1" runat="server" />
<div>

 <rssToolkit:RssDataSource ID="RssDataSource1"
 runat="Server" MaxItems="7">
 </rssToolkit:RssDataSource>

 <asp:UpdatePanel ID="UpdatePanel1" runat="server"
 RenderMode="Inline">
 <ContentTemplate>

Listing 13.11 A simple RSS aggregator that uses the UpdatePanel to update the page

Figure 13.5 Installing ASP.NET Futures adds a website template for preconfiguring sites.

464 CHAPTER 13

Implementing common Ajax patterns

 <asp:DropDownList ID="Blogs" runat="server" AutoPostBack="true"
 OnSelectedIndexChanged="Blogs_Changed" >
 <asp:ListItem Text="ASP.NET Weblogs"
 Value="http://weblogs.asp.net/MainFeed.aspx" />
 <asp:ListItem Text="MSDN Blogs"
 Value="http://blogs.msdn.com/MainFeed.aspx" />
 <asp:ListItem Text="DotNetSlackers Community"
 Value="http://dotnetslackers.com/community/blogs
 ➥/MainFeed.aspx" />
 </asp:DropDownList>
 <hr />

 <asp:DataList ID="Posts" runat="server"
 DataSourceID="RssDataSource1">
 <ItemTemplate>
 <asp:HyperLink ID="TitleLink" runat="server"
 Text='<%# Eval("title") %>'
 NavigateUrl='<%# Eval("link") %>' Target="_blank" >
 </asp:HyperLink>
 </ItemTemplate>
 </asp:DataList>

 </ContentTemplate>
 </asp:UpdatePanel>
</div>

To accompany the markup portion of the solution, listing 13.12 shows the code-
behind portion of the application that updates the feeds on the page.

protected void Page_Load(object sender, EventArgs e)
{
 if (!String.IsNullOrEmpty(Blogs.SelectedValue))
 RssDataSource1.Url = Blogs.SelectedValue;
}

protected void Blogs_Changed(object sender, EventArgs e)
{
 RssDataSource1.Url = Blogs.SelectedValue;
 Posts.DataBind();
}

The application uses an RSS component called the ASP.NET RSS Toolkit. You can
download the source and binaries for this component from CodePlex (just like
the Ajax Control Toolkit) at http://www.codeplex.com/ASPNETRSSToolkit. Also

Listing 13.12 Code-behind solution for a simple RSS reader application

http://www.codeplex.com/ASPNETRSSToolkit
http://www.codeplex.com/ASPNETRSSToolkit
http://www.codeplex.com/ASPNETRSSToolkit

Logical navigation and unique URLs 465
note that each time a selection is made from the DropDownList, a postback
occurs because the control’s AutoPostBack property is set to true. Wrapping this
region of the page and the DataList in an UpdatePanel replaces the traditional
postback with an Ajax or asynchronous postback.

 If you run the application in its current state, the feed content refreshes but no
updates are reflected in the browser history. If this is the first page you load in the
browser, then the Back and Forward buttons remain disabled even after updates
to the page are made. The first step in resolving this situation is to add the History
control to the page:

<asp:History ID="History1" runat="server"
 OnNavigate="NavigateHistory" />

Similar to the ScriptManager, only one instance of the control can exist on a page.
It can also be placed on a master page to extend its reach to multiple pages. The
Navigate event is raised on both the client and server and includes data about the
state of the page in the URL. Handling this event and using the data appended to
the address lets you re-create the state of the page for a specific logical view. Let’s
examine these events more closely to add the functionality you’re looking for.

 The History control has a method called AddHistoryPoint that adds an entry in
the browser’s history repository. It’s important to note that the page and all the post-
back information aren’t placed in memory (that would be inefficient): Only the
URL of the page and the appended variables that reflect its current state are added
to the browser history. This will make more sense after you examine listing 13.13,
which illustrates how to use the AddHistoryPoint method when the selected blog
feed has changed.

protected void Blogs_Changed(object sender, EventArgs e)
{
 History1.AddHistoryPoint("blogState", Blogs.SelectedIndex);
 RssDataSource1.Url = Blogs.SelectedValue;
 Posts.DataBind();
}

You pass in two parameters to the AddHistoryPoint method. The first parameter
is the key for an item in a dictionary called blogState. (You can name this key
anything you’d like—blogState seemed descriptive.) The second parameter rep-
resents the value you want to associate with the key. Because you want to restore
the page to its original state before the postback occurred, you store the index of

Listing 13.13 Using the AddHistoryPoint method

466 CHAPTER 13

Implementing common Ajax patterns
the selected feed in history. You can then retrieve this value to restore the page
when the Back or Forward button is clicked (more on this soon).

 This time, when you run the application and select a different feed from the list,
the URL is updated along with an entry in the browser history (see figure 13.6).

WARNING At the time of this writing, the history state is unencrypted. This means a
user could tamper with the state directly. You should implement mea-
sures to validate the data on both the client and server.

This is the first half of the pattern: adding an entry in the history repository. The
second half is reading that entry and restoring the state of the page. Listing 13.14
shows how you can accomplish this in the Navigate event handler for the page.

protected void NavigateHistory(object sender, HistoryEventArgs e)
{
 int index = 0;
 if (e.State.ContainsKey("blogState"))
 index = int.Parse(e.State["blogState"].ToString());

 Blogs.SelectedIndex = index;
 RssDataSource1.Url = Blogs.Items[index].Value;
 Posts.DataBind();
}

Listing 13.14 Retrieving the state of the page and restoring it to completes the
 logical navigation

Figure 13.6 Calling AddHistoryPoint updates the URL with the state of the page and adds an
entry to the history log.

Logical navigation and unique URLs 467
When the Navigate event is thrown, that is your opportunity to retrieve the state of
the page and restore it. Passed in to the event is a set of arguments of type History-
EventArgs (declared in the Microsoft.Web.Preview.UI.Controls namespace).
The arguments include a State variable that contains the key/value pairs for the
state of the page. With this information, you can retrieve the last state of the page
and update the UI accordingly.

 The logical navigation pattern can also be implemented from the client. You can
add entries to the browser history as well as restore the page, all from JavaScript. To
demonstrate, consider a page with three buttons. The click of each button updates
an element on the page that displays which button was clicked. Listing 13.15 shows
the complete solution for how you can manage history from JavaScript.

<form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <asp:History ID="History1" runat="server" />
 <div>
 <p>
 <input type="button" id="button1" value="Button 1"
 onclick="handleClick(1);" />
 <input type="button" id="button2" value="Button 2"
 onclick="handleClick(2);" />
 <input type="button" id="button3" value="Button 3"
 onclick="handleClick(3);" />
 </p>
 <p>State: </p>
 </div>
</form>

<script type="text/javascript" language="javascript">

 Sys.Application.get_history().add_navigate(onNavigate);

 function pageLoad(sender, args){
 $get("currentState").innerHTML = 0;
 }

 function handleClick(state){
 $get("currentState").innerHTML = state;
 Sys.Application.get_history().addHistoryPoint(
 ➥{pageState: state});
 }

Listing 13.15 Managing the History control and the Navigate event from JavaScript

Add History
control

B

Add handler
for navigate
event

C

Initialize
current stateD

Add to browser
history

E

468 CHAPTER 13

Implementing common Ajax patterns
 function onNavigate(sender, args){
 var state = args.get_state().pageState || 0;
 $get("currentState").innerHTML = state;
 }

</script>

The declaration of the B History control is placed immediately after the Script-
Manager. Next, you declare the markup for the buttons and the element on the
page (currentState) that displays the current state.

 Now, let’s check out the script. To handle the Navigate event that is raised
when the user clicks the Back or Forward button, you need an instance of the cli-
ent-side History class. You can retrieve this from Sys.Application by calling C
get_history. Registering the event is accomplished by calling add_navigate (a
global event handler named pageNavigate is also available, just like pageLoad).
What follows are the handlers for the events on the page.

 First, the D pageLoad function initializes the default state of the page (see chap-
ters 2 and 7 for more about pageLoad and the client-side page lifecycle). By default,
the state is 0, signifying that no button has been clicked. When a button is clicked,
an instance of the client-side History class is retrieved so you can call the E addHis-
toryPoint function and pass in a dictionary object with the current state. Last, in
the onNavigate event handler, you retrieve the state arguments F and restore the
page by updating the currentState element.

 This sums up how you can manipulate and work with the browser history to fix
the Back button. Next, we’ll take a look at unique URLs and how you can add
richer bookmark support to your sites.

13.3.2 Unique URLs

The ability to link from one site to another, together with the capacity to book-
mark a page and return to it later, are key to the success of the web. Earlier, we
demonstrated how appending content to a URL provides a mechanism for retriev-
ing the state of a page. This technique addresses the issue of the Back and For-
ward buttons in the browser but leaves you short of a solution to bookmark pages
that have been updated dynamically. You still need a means of retrieving and shar-
ing the state of a page across browser instances.

 The term permalink was first coined to describe how users could bookmark a
blog post that would otherwise be difficult to find later. The idea was that the per-
malink link would represent an unchanged connection to a page or some content

Retrieve
stateF

Logical navigation and unique URLs 469
that would otherwise be broken or become irrelevant over time—a process also
known as link rot. Ajax applications frequently suffer from similar symptoms. For
instance, many times, users would like to bookmark a page after investing a signif-
icant amount of time adjusting its state and appearance. Unfortunately, what com-
monly happens is that the bookmark or link they end up adding doesn’t hydrate
the same version of the page they wished to capture.

 For a permalink-like solution, the History objects on the client and server pro-
vide a function that retrieves the state string on the page. Using this formatted
state string, you can bookmark and share a link that you can rely on. For server-
side code, you can retrieve the link by calling the getStateString method:

Permalink.NavigateUrl = "#" + History1.getStateString();

In JavaScript, you can accomplish this by calling the get_stateString function:

plink.href = "#" + Sys.Application.get_history().get_stateString();

In both instances, the state string is prefixed with the # character so it can be for-
matted correctly in the browser. The formatted link can then be made available
for the user. Listing 13.16 offers a JavaScript solution for providing a unique URL
for the page.

function handleClick(state){
 ...
 updatePermalink();
}

function onNavigate(sender, args){
 ...
 updatePermalink();
}

function updatePermalink(){
 var plink = $get("permalink");
 plink.href = "#" +
 Sys.Application.get_history().get_stateString();
 if (plink.href !== "#")
 plink.innerHTML = "Permalink: " + plink.href;
 else
 plink.innerHTML = "Permalink";
}

Listing 13.16 Retrieving and formatting the state string to get a unique link to a page

470 CHAPTER 13

Implementing common Ajax patterns
Although this seems like a trivial task, this minor addition to a web application
can greatly improve the user’s experience.

 Now, let’s move to another design pattern. In the following sections, we’ll dis-
cuss client-side data binding and show you how to perform it using XML Script
declarative code and a client control called the ListView.

13.4 Declarative data binding

In a web application, controls are often bound to data. The data coming from a
database—or other kinds of data storage—is displayed in the UI of one of the web
pages that make up the application. For example, a Label control might be in
charge of displaying the description of one of the products contained in a store’s
catalog. Similarly, a HyperLink control could be used to redirect the user to the
details page for a specific product. In this case, the URL of the HyperLink would
contain a reference to the product ID.

 The process of displaying data through controls in the page is called data
binding. With ASP.NET, data binding typically occurs on the server side, thanks to
the many server controls available for this purpose, such as the Repeater, Grid-
View, and DataList. In this section, you’ll perform data binding on the client
side using ASP.NET AJAX and a client control contained in the ASP.NET Futures
package. This control, ListView, is a templated control similar to the Repeater
server control. Through the ListView, you can define a global layout as well as
templates for the items to display, and also a template to display in case the data
source is empty.

 In the following example, you’ll use the ListView control to display a list of
products extracted from the AdventureWorks database. (You can download this
database for free from the Microsoft website and use it as a test database during
the development phase. Appendix A contains instructions on how to set up the
AdventureWorks database.) To make things more interesting, you’ll write the cli-
ent-side logic using XML Script, the client declarative language that we discussed
in chapter 11. As usual, you can download the complete code for the example
from the book’s website, www.manning.com/gallo. Figure 13.7 shows the example
up and running in Internet Explorer.

13.4.1 Setting up the Web Service

Because the ListView control operates on the client side, the first thing to do is get
the data to bind to the client control. To do that, you’ll create an ASP.NET Web Ser-
vice that connects to the database and returns a list of Product objects. Each Product

http://www.manning.com/gallo
http://www.manning.com/gallo
http://www.manning.com/gallo

Declarative data binding 471
instance contains the ID and the description of a product extracted from the Adven-
tureWorks database.

 The Web Service is called ProductsService, and you create it in the root direc-
tory of an ASP.NET Futures-enabled website. The Web Service class is located in a
file called ProductsService.asmx. The Web Service is configured for ASP.NET
AJAX, following the procedure explained in chapter 5. The only web method
exposed by the Web Service is called GetTopTenProducts. The web method
returns the first 10 products extracted from the Product table of the Adventure-
Works database. The relevant code for the Web Service is shown in listing 13.17.

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[ScriptService]
public class ProductsService : WebService {

 [WebMethod]
 public Product[] GetTopTenProducts()

Listing 13.17 Code for the ProductsService Web Service

Figure 13.7 A ListView bound to a list of products using XML Script. The data, stored
in the AdventureWorks database, is accessed through a Web Service.

472 CHAPTER 13

Implementing common Ajax patterns
 {
 return GetProducts();
 }

 private Product[] GetProducts()
 {
 // ADO.NET code for accessing the AdventureWorks database.
 }
}

The ProductsService class is decorated with the ScriptService attribute. This
instructs ASP.NET AJAX to generate a client proxy for calling the web methods
from the client side. The GetTopTenProducts method uses a private method
called GetProducts to access the database and return an array of Product objects.
The code for the GetProducts method has been omitted for simplicity, but it
opens an ADO.NET connection to the database and uses a textual query to retrieve
the products records. Then, the returned records are used to build instances of
the Product class, which is declared as shown in listing 13.18.

public class Product
{
 private int id;
 private string name;

 public int ID
 {
 get { return id; }
 set { id = value; }
 }

 public string Name
 {
 get { return name; }
 set { name = value; }
 }
}

The Product class exposes two properties: ID and Name. These properties hold
the ID and the product name, respectively. Because the GetTopTenProducts web
method returns an array of Product instances, the Product type is automatically

Listing 13.18 Code for the Product class

Declarative data binding 473
proxied on the client side by the ASP.NET AJAX engine. As a consequence, Prod-
uct instances are serialized to JSON and sent to the browser after the web
method returns.

 The next step is to set up the ASP.NET page that contains the client ListView
control. This page contains the code for calling the web method, retrieving the
list of products, and binding it to the ListView. Before we show the code, let’s
introduce the ListView and its main features and properties.

13.4.2 The ListView control

The ListView is a templated client control for displaying data, similar to the
Repeater and DataList controls provided by ASP.NET. The main difference with a
server control such as the DataList is that whereas the DataList renders static
HTML in the page, the ListView is rendered using dynamic HTML on the client
side. The ListView control is defined in the Sys.Preview.UI.Data.ListView class
and supports the following templates:

■ Item template—Defines the appearance of a data item.

■ Layout template—Defines the layout of the data container. For example, the
layout template could be a table and the item template could be row of the
table.

■ Empty template—Contains the HTML to display when no data is available.

The templates are defined in the page using static HTML. Then, the IDs of the tem-
plates are passed to the ListView instance. Finally, the ListView control takes care of
instantiating the templates to obtain the final layout of the control. Listing 13.19
shows the templates you use in the data-binding example.

<div id="myListView">
 <table id="listView_layoutTemplate">
 <thead>
 <tr>
 <th colspan="2">Articles</th>
 </tr>
 </thead>
 <tbody id="listView_itemTemplateParent">

Listing 13.19 Templates for the ListView control

Associated elementB

Container for
layout templateC

Container
for items

D

474 CHAPTER 13

Implementing common Ajax patterns
 <tr id="listView_itemTemplate">
 <td></td>
 <td><a id="detailsLink"
 href="#">View Details</td>
 </tr>
 </tbody>
 </table>
</div>

The templates are declared in a B container element, which becomes the associ-
ated element of the ListView control. In the container element, the layout tem-
plate is declared as a C table element with the ID listView_layoutTemplate.
(The layout template is a portion of HTML that is always displayed on the page,
even if there’s no data to bind to the control.)

 Don’t forget to specify a container element for the item template D. This ele-
ment is used by the ListView as the container for all the data items. You obtain the
HTML for each data item by cloning the item template. In this case, the item tem-
plate is represented by a table row E that contains a span element and an anchor
tag. These elements are bound to the ID and the Name properties of each Product
object returned by the web method.

 The entire job of instantiating the ListView and wiring it to the templates is
straightforward if done using the declarative XML Script language. The declarative
code for the example, shown in listing 13.20, should be embedded in an XML Script
block in the ASP.NET page.

<page xmlns="http://schemas.microsoft.com/xml-script/2005">
 <components>
 <listView id="myListView"
 itemTemplateParentElementId=
 ➥"listView_itemTemplateParent">
 <layoutTemplate>
 <template layoutElement=
 ➥"listView_layoutTemplate" />
 </layoutTemplate>
 <itemTemplate>
 <template layoutElement="listView_itemTemplate">
 <label id="nameLabel">
 <bindings>
 <binding dataPath="Name"
 property="text" />
 </bindings>

Listing 13.20 XML Script code for the declarative data-binding example

Item
template

E

Item template
parent element

B

Template layout
element

C

Controls in
templateD

Bind Name
propertyE

Declarative data binding 475
 </label>
 <hyperLink id="detailsLink">
 <bindings>
 <binding dataPath="ID"
 property="navigateURL"
 transform="ToDetailsUrl"
 />
 </bindings>
 </hyperLink>
 </template>
 </itemTemplate>
 </listView>
 </components>
</page>

The ListView control is declared in the components node, with the ID myListView.
The itemTemplateParentId attribute B is set to the id of the HTML element that
will contain the data rows. As we said before, each data row is obtained by cloning
the elements in the item template and adding them in the parent element.

 In the listView tag, you associate the HTML for the templates with the List-
View control. You do so with the layoutTemplate, itemTemplate, and emptyTem-
plate tags. Each tag has a child node called template, with a layoutElement
attribute C. Its purpose is to specify the id of the HTML element that acts as the
template container. In each template element, you can map the DOM elements to
the corresponding controls D, as you do with the nameLabel label and the
detailsLink hyperlink.

 Because you want to bind the controls in the item template, you declare bindings
for the label and the hyperlink. When you bind the ListView control by setting its
data property (you’ll do so in a moment), each control in the current data row can
access the corresponding data item through its dataContext property. This is also
true for the bindings declared in the code, because they inherit the same data con-
text as the containing control. In this example, each data item is a Product instance.
Therefore, you have to set the dataPath attribute of each binding to a property of
the current Product instance. The label’s text is bound to the Name property E and
the hyperlink’s URL is bound to the ID property, through a transformer called ToDe-
tailsUrl F. The transformer turns the value of the ID property into a valid URL.

 To complete the example, you have to add a JavaScript code block to the
ASP.NET page. This block contains the code for the transformer, together with the
other imperative code used in the example, as shown in listing 13.21.

Use transformer to
bind ID property

F

476 CHAPTER 13

Implementing common Ajax patterns
<script type="text/javascript">
<!--
 function pageLoad() {
 ProductsService.GetTopTenProducts(onGetComplete);
 }

 function onGetComplete(result) {
 $find('myListView').set_data(result);
 }

 function ToDetailsUrl(sender, e) {
 var productId = e.get_value();
 var formatUrl = "catalog.html?product_id={0}";

 e.set_value(String.format(formatUrl, productId));
 }
//-->
</script>

In the pageLoad function, you invoke the web method defined in the Prod-
uctsService service B through the client proxy created by ASP.NET AJAX when
you configured the Web Service. For simplicity, you pass only one callback, onGet-
Complete, which is called as soon as the web method returns.

 In the onGetComplete function, you call the set_data method of the List-
View C to pass the array of Product instances returned by the web method. As
soon as the data property is set, the ListView generates the data rows and per-
forms the data binding defined in the XML Script code.

 Finally, the ToDetailsUrl function is the transformer used to bind the ID
property of each Product item to the navigateURL property of the HyperLink
control. The transformer D appends the value of the ID property of the current
Product instance to the base URL of the details page for the current product.

13.5 Declarative widgets

If you’ve ever visited Live.com, PageFlakes.com, or the Google personalized home
page (http://www.google.com/ig?hl=en), then chances are great that you’ve
encountered draggable items commonly known as widgets. These items are self-
contained portions of the interface that the user can customize and drag around
the page. Each widget, in turn, can be dragged from its original location and
docked into a new area on the screen.

Listing 13.21 Imperative code used in the declarative data-binding example

Invoke web
method

B

Bind
ListView

C

Format
URL for
details
page

D

http://www.google.com/ig?hl=en
http://www.google.com/ig?hl=en
http://www.google.com/ig?hl=en

Declarative widgets 477
In this example, you’ll leverage two client components shipped with the ASP.NET
Futures—DragDropList and DraggableListItem behaviors, to create a similar
pattern. To build the example, you’ll take advantage of the XML Script declarative
language discussed in chapter 11. Figure 13.8 shows what you’ll put together with
these behaviors.

 Before we explain the steps needed to build the example, let’s do an overview
of the DragDropList and DraggableListItem behaviors. These behaviors work
together to create a list of draggable DOM elements. The DragDropList behavior
lets you turn a DOM element into a container that hosts a group of draggable ele-
ments. In the container, you define the draggable elements—the widgets—as por-
tions of static HTML. Then, you associate an instance of the DraggableListItem
behavior with each widget to turn it into a draggable item.

 To better clarify the concept of a drag-drop list, let’s examine the behaviors
and their main features. We’ll discuss components that take advantage of the
drag-and-drop engine, so you may want to review the concepts presented in chap-
ter 12 before proceeding.

13.5.1 The drag-drop list

The DragDropList behavior can turn a DOM element—usually a div or a span—
into a container of draggable elements. In the container, which is called the

Figure 13.8 Example of widgets with drag-and-drop support, realized using the DragDropList and
DraggableListItem behaviors.

478 CHAPTER 13

Implementing common Ajax patterns
drag-drop list, a portion of static HTML can become a draggable item by being
associated with a DraggableListItem behavior.

 The DragDropList and DraggableListItem behaviors are shipped with the
ASP.NET Futures package, which is available for download at the official ASP.NET
AJAX website (http://ajax.asp.net). Appendix A provides instructions on how to
install the package. The client classes relative to the behaviors are located in the
PreviewDragDrop.js file, which is embedded as a web resource in the
Microsoft.Web.Preview assembly. Specifically, the DragDropList behavior is
defined in the Sys.Preview.UI.DragDropList class. The DraggableListItem
behavior is defined in the Sys.Preview.UI.DraggableListItem class.

 The following is a list of the main features offered by the DragDropList behavior:

■ List items can be dragged outside the list or dropped in it. If the accepted
data type is set to HTML, dropping an item in the list causes the automatic
rearrangement of the remaining items to accommodate the dropped item
(reorder-list functionality).

■ The list can be rendered horizontally or vertically.

■ You can specify a drag mode (Move or Copy). If you specify Move, the
dragged element becomes the current drag visual. If you specify Copy, an
alpha-blended clone of the element is used as the drag visual.

■ You can declare an HTML template for the drag visual.

■ You can declare an HTML template for the drop cue. The drop cue is used
to highlight the area where an item can be dropped.

■ The list can be data bound.

The Sys.Preview.UI.DragDropList class exposes the following properties:

■ acceptedDataTypes—The accepted data types

■ data—The data bound to the list

■ dataType—The data type associated with the list

■ emptyTemplate—The template to display when the list is empty

■ dropCueTemplate—The template used to highlight the drop zone

■ dropTargetElement—The element associated with the DragDropList

■ direction—Specifies whether the list should be rendered horizontally or
vertically

■ dragMode—The drag mode (either Move or Copy)

http://ajax.asp.net
http://ajax.asp.net
http://ajax.asp.net

Declarative widgets 479
To make the DragDropList behavior work, you need to create a block of structured
markup. You must declare a portion of static HTML in the proper way. Usually, you
start with a container element that becomes the DOM element associated with the
DragDropList behavior. In the element, you declare a set of child nodes that
become the list items. For example, the following HTML markup is suitable for
use with a DragDropList behavior:

<div id="listContainer">
 Item 1
 Item 2
 Item 3
</div>

The div element is the list container and becomes the element associated with
the DragDropList behavior. Each span element represents a list item and can
have child elements. To create the drag-drop list, the container element is associ-
ated with the DragDropList behavior, and each item element must be associated
with an instance of the DraggableListItem behavior.

 The Sys.Preview.UI.DraggableListItem class works in conjunction with the
DragDropList behavior to provide a list with drag-and-drop capabilities. The
DraggableListItem class exposes the following properties:

■ data—The data bound to the current item

■ handle—The ID of the HTML element that acts as the handle for the drag-
gable item

■ dragVisualTemplate—A template to display while the item is being
dragged

To become more confident with the DragDropList and the DraggableListItem
behaviors, you’ll now learn how to implement the scenario illustrated in the intro-
duction to section 13.5 using the XML Script declarative code. We covered the
XML Script declarative language in great detail in chapter 11.

13.5.2 Widgets and XML Script

Finally, it’s time to put together the declarative widgets example. Let’s start by
configuring the ASP.NET page that will host the widgets. Because you’ll use the
DragDropList and DraggableListItem behaviors, you need to work in an
ASP.NET Futures enabled website. Instructions on how to set up such a website can
be found in appendix A. Then, you need to load some script files using the Script-
Manager control that you’ll declare in a new ASP.NET page. You’ll write the client
code using the XML Script declarative language, so you need to enable it in the

480 CHAPTER 13

Implementing common Ajax patterns
page together with the drag-and-drop components. The ScriptManager control
looks like this:

<asp:ScriptManager ID="scriptManager" runat="server">
 <Scripts>
 <asp:ScriptReference Assembly="Microsoft.Web.Preview"
 Name="PreviewScript.js" />
 <asp:ScriptReference Assembly="Microsoft.Web.Preview"
 Name="PreviewDragDrop.js" />
 </Scripts>
</asp:ScriptManager>

After the ScriptManager control, you have to define the static HTML that will
become the drag-drop list. To obtain the kind of layout shown in figure 13.8, you
style two div elements as the two columns that host the draggable widgets. This is
done in a CSS file referenced in the ASP.NET page, which isn’t included in the fol-
lowing listings. (You can access and run the complete source code for this exam-
ple after downloading it from www.manning.com/gallo.) Listing 13.22 shows the
static HTML to add to the ASP.NET page.

<div class="widgets">

 <%-- Left List --%>
 <div id="leftArea" class="left_col">

 <%-- Widget 1 --%>
 <div id="widget1" class="widget">
 <div id="widget1_Handle"
 class="widget_handle">Widget 1</div>
 <div class="widget_content">
 <asp:Login ID="myLogin" runat="server"
 CssClass="centered"></asp:Login>
 </div>
 </div>

 <%-- Widget 2 --%>
 <div id="widget2" class="widget">
 <div id="widget2_Handle"
 class="widget_handle">Widget 2</div>
 <div class="widget_content">
 Enter some text:
 <asp:TextBox ID="TextBox1"
 runat="server"></asp:TextBox>
 </div>
 </div>

 </div>

Listing 13.22 Static HTML for the declarative widgets example

WidgetC

Left-side list B

http://www.manning.com/gallo
http://www.manning.com/gallo
http://www.manning.com/gallo

Declarative widgets 481
 <%-- Right List --%>
 <div id="rightArea" class="right_col">

 <%-- Widget 3 --%>
 <div id="widget3" class="widget">
 <div id="widget3_Handle"
 class="widget_handle">Widget 3</div>
 <div class="widget_content">
 <asp:Calendar ID="Calendar1" runat="server"
 CssClass="centered"></asp:Calendar>
 </div>
 </div>

 </div>

 <%-- Templates --%>
 <div class="templates">
 <%-- Drop Cue template --%>
 <div id="dropCueTemplate" class="drop_cue"></div>
 <%-- Empty template --%>
 <div id="emptyTemplate"
 class="emptyList">Drop widgets here.</div>
 </div>

</div>

The static HTML includes two div elements, both containing two widgets. The
outer div elements B act as drop zones for the widgets and will be associated
with instances of the DragDropList behavior. The div elements that act as the
widgets C will become items of the containing list and will be associated with
instances of the DraggableListItem behavior.

 At the bottom of the markup code, you define templates used by the Drag-
DropList behavior. The drop-cue template D highlights a valid drop zone for the
widget being dragged. The empty template E displays some text when a list
doesn’t contain any items. Because the templates are used by the DragDropList,
you don’t need to show them in the page; you just need to declare the HTML and
wire it to a DragDropList instance. For this reason, templates are hidden by the
templates CSS class, which sets the display mode of the child elements to false.

 To turn the static HTML into dynamic HTML, you write some XML Script code
in the page. The HTML Script code contains the declarative markup that wires the
DOM elements to instances of the DragDropList and DraggableListItem behav-
iors. The entire XML Script block to embed in the ASP.NET page is shown in list-
ing 13.23.

Drop Cue
template

D

Empty
template

E

482 CHAPTER 13

Implementing common Ajax patterns
<script type="text/xml-script">
 <page>
 <components>

 <!-- Left Area -->
 <control id="leftArea">
 <behaviors>
 <dragDropList dragDataType="HTML"
 acceptedDataTypes="'HTML'"
 dragMode="Move"
 direction="Vertical">
 <dropCueTemplate>
 <template layoutElement=
 ➥"dropCueTemplate" />
 </dropCueTemplate>
 <emptyTemplate>
 <template layoutElement=
 ➥"emptyTemplate" />
 </emptyTemplate>
 </dragDropList>
 </behaviors>
 </control>

 <!-- Right Area -->
 <control id="rightArea">
 <behaviors>
 <dragDropList dragDataType="HTML"
 acceptedDataTypes="'HTML'"
 dragMode="Move"
 direction="Vertical">
 <dropCueTemplate>
 <template layoutElement=
 ➥"dropCueTemplate" />
 </dropCueTemplate>
 <emptyTemplate>
 <template layoutElement=
 ➥"emptyTemplate" />
 </emptyTemplate>
 </dragDropList>
 </behaviors>
 </control>

 <!-- Draggable items -->
 <control id="widget1">
 <behaviors>
 <draggableListItem handle="widget1_Handle" />
 </behaviors>
 </control>
 <control id="widget2">
 <behaviors>

Listing 13.23 Declarative XML Script code for the widgets example

DragDropList
declaration B

Drop Cue
template

C

Empty
template

D

WidgetE

Widget handle F

Declarative widgets 483
 <draggableListItem handle="widget2_Handle" />
 </behaviors>
 </control>
 <control id="widget3">
 <behaviors>
 <draggableListItem handle="widget3_Handle" />
 </behaviors>
 </control>

 </components>
 </page>
</script>

The approach followed in the code is to encapsulate the relevant DOM elements
into generic client controls. You do so by declaring a control tag with the id
attribute set to the ID of the associated DOM element. In the XML Script code, you
create controls for the two drag-drop lists B and the widgets E. Because the two
drag-drop lists are declared in a similar manner, let’s focus on the one that occu-
pies the left portion of the page area.

 Each DragDropList behavior is added as a behavior of the corresponding con-
trol. You do this by adding a dragDropList element in the behaviors element of
the control. As a consequence, the control associated with the container div of
the left list has a DragDropList behavior whose attributes are set as follows:

■ The dragDataType attribute must be set to HTML to make the list automati-
cally rearrange its items when a widget is dropped over the list’s area.

■ The acceptedDataType attribute lets you specify a comma-separated list of
accepted data types. Each data type is a string enclosed in single quotes.
The dragDataType is set to HTML, so the acceptedDataTypes attribute con-
tains at least the HTML data type.

■ The dragMode attribute is set to Move. Copy mode has no effect on the Drag-
DropList behavior.

■ The direction attribute is set to Vertical to specify that the list has a verti-
cal orientation.

The dropCueTemplate C and emptyTemplate D tags wire the HTML for the tem-
plates to the DragDropList instance. This is done by specifying the ID of the DOM
element that contains the HTML for the template in the id attribute of the tem-
plate tag.

484 CHAPTER 13

Implementing common Ajax patterns
 Widgets E are declared as generic client controls with an associated Dragga-
bleListItem instance. Each widget has a handle F that is used to drag it around
the page. The handle is represented by a div element rendered at the top of the
widget, as shown in figure 13.8. To specify that this element is the widget’s handle,
you set the handle attribute of the draggableListItem element to the ID of the
handle element. All the remaining widgets have similar declarations.

 Note that you don’t have to wire the widgets to the drag-drop list in the XML
Script code. The list items are considered child elements of the DOM element
associated with the drag-drop list, as specified in the static structured HTML.

13.6 Summary

In the final chapter of this book, you have used the ASP.NET AJAX framework to
implement some of the many Ajax patterns available. A large portion of the chap-
ter has been dedicated to coding and development patterns. Due to the role of
JavaScript as the main client development language for Ajax applications, we
showed how to implement some patterns that make JavaScript files shorter and
easier to debug. We provided patterns on how to provide informative stack traces,
comment the JavaScript files (in order to also take advantage of the IntelliSense
tool in Visual Studio Orcas) and performing parameters validation in the debug
version of a script file.

 Since in JavaScript size matters, we provided two helper methods for creating
client properties and events using a single statement. These helpers, which extend
the Microsoft Ajax Library itself, allow writing less client code and saving a lot of
keystrokes, while decreasing the size of JavaScript files sent to the browser.

 Then, we moved to examine the implementations of some design patterns. We
started with logical navigation and unique URLs. Logical navigation fixes the “bro-
ken Back button” problem by allowing access to different views of the same page.
Unique URLs is a pattern that allows bookmarking the state of a page, to realize a
sort of permalink-like solution.

 The last two patterns are related to drag and drop widgets (ala PageFlakes)
and data binding. To implement these patterns, we used some of the features
available in the ASP.NET Futures package, such as the declarative XML Script lan-
guage and the drag and drop engine. For performing data binding on the client
side, we took advantage of the client ListView control to display a list of products
from the AdventureWorks database.

Appendices

Appendix A contains instructions for installing ASP.NET AJAX, the
ASP.NET Futures package, and the Ajax Control Toolkit. It also shows you
how to set up the AdventureWorks database, in order to run some of the
examples presented in the book.

 Appendix B is dedicated to debugging tools. It contains an overview of
the main features provided by Firebug for Firefox and Web Development
Helper for Internet Explorer. The final section shows you how to debug Java-
Script files using the Visual Studio Debugger.

appendix A:
Installing

ASP.NET AJAX
487

488 APPENDIX A

Installing ASP.NET AJAX
In this appendix, you’ll learn how to install ASP.NET AJAX and the additional
packages available on the official website, such as the ASP.NET Futures, including
the ASP.NET AJAX source code. We’ll also explain how to install the Ajax Control
Toolkit and how to interact with the Toolkit homepage hosted at the CodePlex
website. Because some of the examples presented in the book take advantage of
the AdventureWorks database, the last section shows how to use this database in
an ASP.NET website.

A.1 Downloading and installing ASP.NET AJAX

You can download the ASP.NET AJAX Extensions installer from the official website
at http://ajax.asp.net. Figure A.1 shows the Downloads page of the official web-
site. To reach it, click the Downloads button at the top of the page. From this
page, you can download the latest release of ASP.NET AJAX as well as additional
packages and resources such as the official documentation.

 Once you’ve downloaded the ASP.NET AJAX Extensions installer, you can launch
it by double-clicking the executable file. This starts the installation wizard, shown in

Figure A.1 You can download all the ASP.NET AJAX packages from the Downloads page of the
official website.

http://ajax.asp.net
http://ajax.asp.net
http://ajax.asp.net

APPENDIX A

Installing ASP.NET AJAX 489
figure A.2. The installer copies the necessary files to the default installation direc-
tory, which is the following:

C:\Program Files\Microsoft ASP.NET\
 ➥ASP.NET 2.0 AJAX Extensions\v1.0.61025

The installation folder has the same name as the current version number, which
will vary for subsequent releases.

 If you browse to the installation folder, you’ll find the following files:

■ The Microsoft Ajax Library files, stored in the MicrosoftAjaxLibrary folder

■ The System.Web.Extensions and System.Web.Extensions.Design assem-
blies, which contain the ASP.NET AJAX server framework

■ A web.config file already configured for ASP.NET AJAX

The System.Web.Extensions assembly is automatically added to the Global
Assembly Cache (GAC) by the installer. For this reason, there’s no need to refer-
ence it in a website’s bin folder. The Microsoft Ajax Library files are also embed-
ded as web resources in the System.Web.Extensions assembly. To configure an
ASP.NET AJAX-enabled website, the only thing you have to do is use the web.config
file found in the installation directory. If you’re upgrading an existing website,

Figure A.2 The ASP.NET AJAX Extensions installer

490 APPENDIX A

Installing ASP.NET AJAX
you have to copy all the settings of the web.config file found in the installation
directory to the web.config file of the website to upgrade.

 To make it easier starting with ASP.NET AJAX, the installer configures also a
Visual Studio template that sets up an ASP.NET AJAX-enabled website. To select
the template, open Visual Studio 2005 and choose New Project from the File
menu to open a window similar to the one shown in figure A.3.

 The ASP.NET AJAX-Enabled Website template creates the following files:

■ A Default.aspx page with the ScriptManager control in it

■ A web.config file already configured for ASP.NET AJAX

To take advantage of the Visual Studio Designer while developing for ASP.NET
AJAX, you may want to add the ASP.NET AJAX controls to the Visual Studio Tool-
box. The next section explains how to do it.

Figure A.3 Templates installed by the ASP.NET AJAX installers

APPENDIX A

Installing ASP.NET AJAX 491
A.1.1 Adding the ASP.NET AJAX controls to the Toolbox

To add the ASP.NET AJAX controls to the Visual Studio
Toolbox, proceed as follows:

1 Right-click (CTRL-Click on a Mac) the Toolbox,
and choose Add New Tab. Name the new tab
ASP.NET AJAX Extensions or give it whatever
name you prefer.

2 Right-click the new tab, and click Choose Items. A
Browse dialog opens, where you can choose
which assembly to add. Browse to the Sys-
tem.Web.Extensions.dll file, and double-click it.
Now all the Toolkit controls are in the new tab in
the Visual Studio Toolbox, as shown in figure A.4.

The Downloads page of the official ASP.NET AJAX web-
site contains additional packages available for down-
load. The following sections will guide you through
the installation process.

A.1.2 Installing the ASP.NET Futures CTP

The ASP.NET Futures CTP is a package containing additional features that are sup-
posed to be included in the next releases of ASP.NET AJAX. These features aren’t
supported by Microsoft and are provided as Community Technical Preview (CTP)
code for evaluation purposes.

 You can download the Futures CTP installer from the official ASP.NET AJAX
website. When you run it, a wizard will guide you through the installation process,
as shown in figure A.5. The installation directory contains the following:

■ The Microsoft Ajax Library script files, stored in the ScriptLibrary folder

■ The Microsoft.Web.Preview.dll assembly

■ A web.config file already configured for ASP.NET AJAX CTP

To configure a new website for ASP.NET AJAX CTP, the only thing you have to do is
use the web.config file found in the installation directory. If you’re upgrading an
existing website, you have to copy all the settings of the web.config file found in
the installation directory to the web.config file of the website to upgrade.

 The installer also configures a Visual Studio template to create an ASP.NET
AJAX CTP-enabled website. To select the template, open Visual Studio 2005, and
choose New Project from the File menu.

Figure A.4 The ASP.NET
AJAX controls added to the
Visual Studio Toolbox

492 APPENDIX A

Installing ASP.NET AJAX
The ASP.NET AJAX CTP-enabled Website template creates the following files:

■ A Default.aspx page with the ScriptManager in it

■ A web.config file already configured for the
Futures CTP

■ A bin folder that contains the Microsoft.Web.Pre-
view.dll assembly

The script files embedded in the Microsoft.Web.Pre-
view.dll assembly as web resources need to be explicitly
referenced in the page using the ScriptManager control.
Chapters 11 and 12 explain how to reference the
Futures CTP files in an ASP.NET AJAX CTP-enabled page.
Finally, you can add the ASP.NET Futures CTP controls to
the Visual Studio Toolbox by following the same steps
explained in section A.1.1. The only difference is that
you have to select the Microsoft.Web.Preview assembly
in the Browse dialog. The result is shown in figure A.6.

Figure A.5 The ASP.NET AJAX CTP Installer.

Figure A.6 The ASP.NET
Futures CTP controls added
to the Visual Studio Toolbox

APPENDIX A

Installing ASP.NET AJAX 493
A.1.3 Additional ASP.NET AJAX downloads

In addition to the main ASP.NET AJAX package and the ASP.NET Futures CTP, you
can download the following files from the Downloads page of the official ASP.NET
AJAX website:

■ ASP.NET AJAX Extensions Source Code—The source code for ASP.NET AJAX,
written in C#. The code can be modified and re-compiled to generate the
System.Web.Extensions assembly. You can also use the source code to
debug ASP.NET AJAX applications and step into the code.

■ Microsoft AJAX Library—The JavaScript files needed to enable the Microsoft
Ajax Library in a non-Windows system. For example, the package enables
development with a PHP server.

■ Sample Applications—A collection of samples written with the ASP.NET AJAX
Extensions.

■ Ajax Control Toolkit—A collection of Ajax-enabled controls provided as an
open-source project hosted at CodePlex (http://www.codeplex.com).

The following section gives detailed instructions on how to install the Ajax Con-
trol Toolkit.

A.2 Installing the Ajax Control Toolkit

The Ajax Control Toolkit is hosted at CodePlex, which is Microsoft’s open-source
project hosting website. The project homepage is at http://www.codeplex.com/
AtlasControlToolkit; see figure A.7.

 By clicking the Current Release tab in the homepage, you can choose whether
to download the compiled binaries or the source code. In the first case, you get an
archive that contains a sample website with demos of all the controls and a Visual
Studio template to create a new Extender. If you want to use the Toolkit in your
website, you only need to browse to the bin folder of the sample website and copy
the AjaxControlToolkit.dll assembly into the bin folder of your website. Figure A.8
shows the Toolkit’s sample website, which you can browse online at http://
ajax.asp.net/ajaxtoolkit/.

 If you download the source code, you gain the advantage of being able to
study it or modify it to accommodate your needs. As usual, you must compile the
source code to generate the AjaxControlToolkit.dll assembly to add to your web-
site’s bin folder.

http://ajax.asp.net/ajaxtoolkit/
http://ajax.asp.net/ajaxtoolkit/
http://www.codeplex.com/AtlasControlToolkit
http://www.codeplex.com/AtlasControlToolkit
http://www.codeplex.com
http://www.codeplex.com

494 APPENDIX A

Installing ASP.NET AJAX
Figure A.7 The Ajax Control Toolkit homepage at CodePlex

Figure A.8 The Ajax Control Toolkit’s sample website

APPENDIX A

Installing ASP.NET AJAX 495
A.2.1 Adding the Toolkit controls to the Visual Studio Toolbox

To add the Toolkit controls to the Visual Studio Tool-
box, follow these steps:

1 Right-click (CTRL-Click on a Mac) the Toolbox,
and choose Add New Tab. Name the new tab
Ajax Control Toolkit or give it whatever name
you prefer.

2 Right-click the new tab, and click Choose Items.
A browse dialog opens, where you can choose
which assembly to add. Browse to the installation
directory, and double-click the AJAXExtensions-
Toolbox.dll file. Now all the Toolkit controls are
in the new tab in the Visual Studio Toolbox, as
shown in figure A.9.

A.2.2 Using the Ajax Control Toolkit controls

To use the controls contained in the AjaxControlTool-
kit.dll assembly, you need to register them in an ASP.NET
page. Usually, you do this by adding a @Register direc-
tive at the top of the ASP.NET page in which you declare
one or more Toolkit controls. This directive specifies which assembly and
namespace contain the controls, as well as the tag prefix to use in declarative code.
In the following example, the tag prefix has been set to ajaxToolkit, but you can
choose the one you prefer:

<%@ Register Assembly="AjaxControlToolkit"
 Namespace="AjaxControlToolkit"
 TagPrefix="ajaxToolkit" %>

If you added the Toolkit controls to the Toolbox, you need to drag one onto the
Visual Studio Designer to have the @Register directive automatically added to the
web page. As an alternative, to avoid registering the AjaxControlToolkit assem-
bly in every page, you can register it globally by adding the following code to your
website’s web.config file, under the system.web element:

<pages>
 <controls>
 <add Assembly="AjaxControlToolkit"
 Namespace="AjaxControlToolkit"
 TagPrefix="ajaxToolkit" />
 </controls>
</pages>

Figure A.9 The Ajax Control
Toolkit’s controls added to
the Visual Studio Toolbox

496 APPENDIX A

Installing ASP.NET AJAX
Finally, when you’re dealing with the Toolkit controls programmatically, be sure
to import the AjaxControlToolkit namespace:

using AjaxControlToolkit;

A.2.3 Interacting with CodePlex

The CodePlex website offers a nice interface to deal with hosted projects. For
example, from the Ajax Control Toolkit homepage, you can download the recent
builds of the source code, which are created as soon as the source code is modi-
fied by one of the team members. Figure A.10 shows the page you can access from
the Source Code tab in the project’s tab strip.

 If you think you’ve found a bug or want to signal a feature that you wish would
be included in one of the next releases, you can do that on the page accessible
from the Issue Tracker tab, as shown in figure A.11. You can also vote for the
issues you think should get high priority. The Toolkit team takes votes into consid-
eration for determining the priority of bug fixes.

Figure A.10 You can download recent builds of the Ajax Control Toolkit from the CodePlex website.

APPENDIX A

Installing ASP.NET AJAX 497
Finally, remember that the Ajax Control Toolkit is an open-source project open to
contributions from the community. If you think you’ve developed a cool Ajax-
enabled control, check the homepage for instructions on how to submit your cre-
ation and enter the project as a Toolkit contributor.

A.3 Installing the AdventureWorks database

Some of the examples in the book require access to the AdventureWorks data-
base. Using the AdventureWorks database requires that SQL Server 2005 or SQL
Server Express be installed on your machine.

 The AdventureWorks database is provided free by Microsoft as an example cor-
porate database to be used in development and testing scenarios. You can download
the database from the following URL: http://www.microsoft.com/downloads/
details.aspx?FamilyId=E719ECF7-9F46-4312-AF89-6AD8702E4E6E&displaylang=en.

 Follow these steps to use the AdventureWorks database in an ASP.NET website:

Figure A.11 CodePlex provides an issue tracker to signal and track bugs found in the Ajax
Control Toolkit.

http://www.microsoft.com/downloads/details.aspx?FamilyId=E719ECF7-9F46-4312-AF89-6AD8702E4E6E&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=E719ECF7-9F46-4312-AF89-6AD8702E4E6E&displaylang=en

498 APPENDIX A

Installing ASP.NET AJAX
1 Download and install the AdventureWorks database with the Adventure-
WorksDB.msi installer. This creates two files—AdventureWorks_Data.mdf
and AdventureWorks_Log.ldf—in the installation directory.

2 In Visual Studio, select New Website from the File menu, then choose the
ASP.NET Website template or the ASP.NET AJAX-Enabled Website template.
Visual Studio sets up the new website for you and adds the App_Data folder.

3 Right-click (CTRL-Click on a Mac) the App_Data folder, and choose Add
Existing Item. Then, browse to the AdventureWorks installation folder, and
choose the Adventure- Works_Data.mdf file.

Finally, you need to add the connection string to the web.config file. Open the
web.config file, and add a connectionStrings section under the configuration
element:

<connectionStrings>
 <add name="AdventureWorks" connectionString="Data
 ➥Source=.\SQLEXPRESS;AttachDbFilename=
 ➥|DataDirectory|\AdventureWorks_Data.mdf;
Integrated Security=True;User Instance=True" />
</connectionStrings>

Now you’re ready to use the AdventureWorks
database in a web application. Figure A.12 shows
the AdventureWorks database added to a web-
site’s App_Data website.

 To reference the connection string in
declarative code, you can use the following sub-
stitution expression:

<%$ ConnectionStrings:AdventureWorks %>

You can also reference the connection string programmatically in the code-
behind file. To do that, you need to import the System.Configuration

namespace. The following code stores the connection string for the Adventure-
Works database in the connString variable:

string connString =
 ConfigurationManager.ConnectionStrings["AdventureWorks"].ConnectionString;

Figure A.12 The AdventureWorks
database added to an ASP.NET website

appendix B:
Tools for debugging

Ajax applications
499

500 APPENDIX B

Tools for debugging Ajax applications
This appendix gives you a tour of some of the tools most frequently used by Ajax
developers. It explains how to install web tools like Firebug and Web Develop-
ment Helper and provides an overview of their main features. A section is also
dedicated to Fiddler, a tool for debugging HTTP traffic. Finally, the last section
explains how to debug script files using the Visual Studio debugger and the Script
Explorer window.

B.1 Using Firebug for Firefox

Firebug is a web tool shipped as an add-on to the Firefox browser. It can monitor
HTTP traffic, inspect the DOM of a page, and debug JavaScript code. When run
in the browser, Firebug lets you change the look and behavior of a web page in
real time.

 You can install Firebug from the official website at http://www.getfirebug.com,
which also contains an online guide to the features provided by this web tool. Fig-
ure B.1 shows the Firebug homepage. Let’s examine the installation procedure
for Firebug before diving into a tour of its features.

Figure B.1 The homepage of the Firebug add-on for Firefox

http://www.getfirebug.com
http://www.getfirebug.com
http://www.getfirebug.com
http://www.getfirebug.com

APPENDIX B

Tools for debugging Ajax applications 501
B.1.1 Installing Firebug

Installing Firebug is straightforward. On
the homepage, click the Install icon
located at upper right. Firefox prompts
you for the permissions to perform the
installation and then restarts the browser,
as shown in figure B.2.

 Once the browser has restarted, you
access Firebug by clicking the little green
icon on the status bar at the bottom of the
browser. You can also open and close the
tool by pressing the F12 key and selecting
View > Firebug in the Firefox menu bar.
Doing so opens the Firebug’s console
shown in figure B.3.

 Let’s do a general overview of the fea-
tures available in Firebug, starting from
the logging console.

Figure B.3 The Firebug tool up and running in Firefox

Figure B.2 Firefox prompts you before
installing the Firebug add-on.

502 APPENDIX B

Tools for debugging Ajax applications
B.1.2 Quick Overview of Firebug

Clicking the Console tab switches to the con-
sole window, where messages are logged. As
we explained in chapter 2, the Microsoft
Ajax Library lets you send messages to the
browser’s console by calling the Sys.Debug.
trace method anywhere in the application’s
code, passing a string with the message to
display as an argument. Figure B.4 shows a
message logged in Firebug’s console using
Sys.Debug.trace.

 Selecting the HTML tab switches to a tree-view of the HTML elements of the
browsed page, as shown in figure B.5.

 In the left window, you can expand or collapse each node of the DOM tree, rel-
ative to a particular HTML tag in the page, and inspect the entire markup code of
the page. For each node, the right window lets you inspect the element’s style, the
layout properties (displayed using with the box-model view shown in figure B.5),
and all the properties of the corresponding DOM object.

Figure B.5 Firebug lets you inspect the entire DOM tree of a web page.

Figure B.4 The Console window displays the
messages logged to the browser’s console

APPENDIX B

Tools for debugging Ajax applications 503
The CSS view lets you explore the style-sheets loaded by the browser. You can choose
one from the drop-down list located above the CSS tab, as shown in figure B.6.

 Interestingly, you can modify the style of a page in real time. If you click a CSS
selector in the CSS view, you can edit its properties and add new ones. As soon as
you modify a selector, the changes are reflected on the page. For example, in fig-
ure B.7, we’ve modified the background color of the page and changed the font
size of the body element by adding a font-size property.

 The Script tab opens one of the most interesting windows. In the Script win-
dow, you can inspect the script files loaded by the browser and debug them by set-
ting breakpoints. Figure B.8 shows the Script view, which is split into two windows.

Figure B.6 The CSS tab lets you inspect the CSS files loaded by the browser.

Figure B.7 With Firebug, you can modify the CSS of a web page and see the results in real time.

504 APPENDIX B

Tools for debugging Ajax applications
The left window shows the code for one of the JavaScript files requested by the
browser during the page load. The right window is the Watch window, which lets
you monitor client variables.

 You can select script files from the drop-down list located above the Script tab.
To debug a JavaScript file, you set a breakpoint by clicking the left zone near the
line numbers. You can use the Watch window on the right to examine the values
of all the variables and references in the current statement. In addition, you can
step into the code, add new watch expressions, and examine all the breakpoints
by clicking the Breakpoints tab.

 Next, in the DOM tab, you can inspect the page’s entire DOM tree. In the same
way that the HTML window offers a tree view of the markup code, the DOM window
offers a tree view of the DOM objects. This means you can access every element in
the page as well as all the JavaScript objects created by your client code. Just as you
did in the CSS window, you can change the values of client objects’ properties at
runtime and immediately see the results. Figure B.9 shows the DOM window.

 Finally, you can select the Net window to debug HTTP traffic. The window
reports all the requests made to the web server—either synchronous or asynchro-
nous—with the corresponding round-trip time. By expanding the node relative to
a particular request, you can inspect the HTTP request and response and their

Figure B.8 The Script window lets you inspect and debug script files.

APPENDIX B

Tools for debugging Ajax applications 505
headers and payload, as shown in figure B.10. HTTP requests can also be filtered
based on categories. The top toolbar lists all the available categories: HTML, CSS,
JS, XHR, Images, and Flash.

 Firebug is a premium tool for debugging applications from the Firefox
browser. Next, let’s examine a similar tool for Internet Explorer: Web Develop-
ment Helper.

Figure B.9 The DOM window lets you inspect client objects and modify their properties in real time.

Figure B.10 You can use the Net window to debug HTTP traffic.

506 APPENDIX B

Tools for debugging Ajax applications
B.2 Using Web Development Helper

In this section, we’ll examine a powerful tool called Web Development Helper. Pro-
vided as a browser extension (also referred to as a browser helper object) for IE, Web
Development Helper is useful in JavaScript, Ajax, and ASP.NET development. Fea-
tures of the tool include HTTP tracing capabilities; an in-process script debugger;
and the ability to view items like ViewState, trace messages, and cache informa-
tion, all from within the browser. Web Development Helper also gives you the abil-
ity to view HTTP traffic between the browser and server, get a live snapshot of the
DOM, and inspect script errors from an immediate window.

 The richness of this tool and its awareness of ASP.NET AJAX make it a must-
have for ASP.NET developers. Let’s get started by looking at how you can down-
load and install this valuable tool.

B.2.1 Installing Web Development Helper

Web Development Helper was created by Nikhil Kothari, an architect on the Web
Platform and Tools team at Microsoft. You can find releases, documentation, links,
and other relevant information about the tool at http://projects.nikhilk.net/
Projects/WebDevHelper.aspx. Requirements include the Microsoft .NET 2.0 frame-
work and Internet Explorer 6 and above.

 Installation is clear-cut and simple. After downloading and uncompressing the
zip file, launch the utility by running the WebDevHelper.msi application. You’ll be
prompted with a license agreement and a few quick steps through a wizard, and
then the tool is installed and ready for use.

B.2.2 Launching Web Developer Helper

You can activate Web Development Helper several ways. A common approach is to
select it from the Tools menu in the IE menu bar. You can also invoke it from the
command bar in IE by clicking its dedicated icon or selecting it from the Tools
menu. Once launched, it appears as an explorer bar at the bottom of the browser
(see figure B.11).

 For clarity, commands in the tool are separated according to their logical fea-
ture areas: Page, Script, HTTP, and ASP.NET. For instance, commands for HTTP
include the ability to enable HTTP logging for inspection of traffic. Some of the
ASP.NET features include examining the ViewState, trace information, and cache.

http://projects.nikhilk.net/Projects/WebDevHelper.aspx
http://projects.nikhilk.net/Projects/WebDevHelper.aspx
http://projects.nikhilk.net/Projects/WebDevHelper.aspx

APPENDIX B

Tools for debugging Ajax applications 507
B.2.3 Inspecting HTTP traffic

You configure Web Development Helper for HTTP logging by selecting HTTP
Logging from the drop-down list in the command bar and selecting the Enable
Logging check box. The next time an HTTP request is executed, information
about the request and its response from the server are appended into a log win-
dow. Figure B.12 shows the initial captured requests from a sample application in
chapter 5.

 You can view additional details about a single request by double-clicking an
item in the list. Figure B.13 shows the details of a request made after the Submit
button on the form has been clicked.

 Details about a request are divided into two sections. The top section displays the
request header and body information from the transaction. The bottom section
details the response payload from the server by providing header and content data,
respectively. Selecting the Response Content tab provides UpdatePanel-related

Figure B.11 Web Development Helper appears as an explorer bar at the bottom of the browser.

508 APPENDIX B

Tools for debugging Ajax applications
Figure B.12 Captured HTTP requests made from the browser to the server when the page is
initially loaded

Figure B.13
The HTTP Log Viewer
splits information about
an HTTP transaction into
two windows: request
information and
response information.

APPENDIX B

Tools for debugging Ajax applications 509
information about the response from the server. Figure B.14 shows some of the
ASP.NET AJAX postback-aware data.

B.2.4 Script debugging and tracing

To date, the best debugging experience for JavaScript is available in Visual Studio,
which we’ll cover later in this appendix. Web Development Helper offers some in-
place debugging support that can be helpful as well. To enable script debugging
select Script Console from the command bar, and select the Enable Debugging

Figure B.14 Web Development Helper offers UpdatePanel-sensitive data on the Response Content tab.

510 APPENDIX B

Tools for debugging Ajax applications
check box. (You don’t need to select the check box if all you want to do is view
trace messages.)

 When you select the Script Console option, the bottom portion of the tool
divides into three windows, shown in figure B.15.

 The first window in the console is dedicated to displaying output information
such as trace and debug messages. The middle window acts as an immediate win-
dow that you can use to execute client script on the fly; with this feature, you can
manipulate client-side variables and execute logic at runtime. The last window
contains links to shortcuts and commands in the tool, such as clearing the mes-
sages log or executing code from the immediate window. To output a trace mes-
sage, call the trace function in the Sys.Debug object:

Sys.Debug.trace("This is a trace message.");

Another feature of the script console is rich error reporting. By default, when an
error is detected, you see a dialog containing helpful information that includes
the location and callstack of the exception, as shown in figure B.16.

 In the Script Error dialog box, you can examine the steps that led to the excep-
tion and try to determine its cause. Settings for the error dialog and other fea-
tures in the tool are available on the Tools menu or by clicking the Console
Options button in the command bar. (The Console Options button is the last but-
ton on the command bar and has no text associated with it.)

Figure B.15 The Script Console divides Web Development Helper into three useful windows:
output messages (messages log), immediate window, and commands.

APPENDIX B

Tools for debugging Ajax applications 511
B.2.5 Page and ASP.NET diagnostics

Selecting Page > DOM Inspector brings up a window in which you can view the
current DOM on the page. Figure B.17 shows the DOM Inspector in use.

Figure B.16 Web Development Helper offers rich error reporting that includes location
and callstack information.

Figure B.17
The DOM Inspector
lets you navigate
the page’s DOM
heirarchy.

512 APPENDIX B

Tools for debugging Ajax applications
With the DOM Inspector, you can observe the attributes, styles, markup (currently
selected), and layout of the page. This tool can be a useful alternative to viewing
the source generated by the browser.

 Next up is the ASP.NET menu, which offers options for viewing the ViewState,
trace information, and cache used by the current application. When ViewState is
selected, the ViewState Viewer window appears. You can use the viewer to navigate
between different versions of the data, as shown in figure B.18.

 Web Development Helper is rich and easy to use. Because of its integration
with ASP.NET AJAX and its many features, we highly recommend that you make it
part of your toolbox for Ajax and ASP.NET development. Additional documenta-
tion is available from the tool’s home page.

B.3 Debugging HTTP with Fiddler

Fiddler is a tool for debugging the HTTP traffic between the browser and the
Internet. Unlike Firebug and Web Development Helper, Fiddler is a stand-alone
program that can monitor all HTTP traffic. You can download it from the Fiddler
homepage, located at http://www.fiddlertool.com. Figure B.19 shows the Fiddler
logo that appears as soon as you run the program.

 Once you launch the executable file, Fiddler begins capturing network packets
with HTTP requests and responses. The main window is split into two parts: The
left side lists all the captured HTTP requests and responses, and the right side con-
tains the details of the HTTP transaction selected from the list on the left.

Figure B.18
The ViewState Viewer
grants us a number of
different options for viewing
the ViewState on the page.

http://www.fiddlertool.com
http://www.fiddlertool.com
http://www.fiddlertool.com

APPENDIX B

Tools for debugging Ajax applications 513
You obtain information and statistics about the captured HTTP traffic by selecting
one of the tabs on the toolbar at the top right of the main window. As shown in
figure B.20, the first tab reports various statistics about the network-time perfor-
mance of the selected HTTP request and the associated response.

Figure B.19
Logo of the Fiddler tool for HTTP debugging.

Figure B.20 The Performance Statistics window provides statistics about network times of the HTTP
request selected in the left window.

514 APPENDIX B

Tools for debugging Ajax applications
The Session Inspector tab switches to the details of the selected HTTP request and
the associated response. In this window, you can examine the headers as well as
the contents of the HTTP messages in various formats. Figure B.21 shows the Ses-
sion Inspector window.

 The third tab from the left opens the AutoResponder window, shown in fig-
ure B.22, which lets you use a previously received response to respond to
requests made to a particular URI. This way, you use a predefined response
instead of making a connection to the web server.

Figure B.21 In the Session Inspector window, you can examine the contents of the HTTP
messages in various formats.

APPENDIX B

Tools for debugging Ajax applications 515
One of the nice features of Fiddler is that it lets you test a network connection by
building and sending custom HTTP requests. Figure B.23 shows the Request
Builder window, where you can use an editor to build the headers and the payload
of a HTTP request and send it to the specified URL. Then, you can monitor the
results using the other windows as you do with normal traffic.

 The next section will explain how to set up IE and Visual Studio 2005 for
debugging JavaScript files.

Figure B.22 The AutoResponder window lets you configure a predefined response for HTTP requests
directed to a specific URL.

516 APPENDIX B

Tools for debugging Ajax applications
B.4 Debugging JavaScript in Visual Studio 2005

With Visual Studio 2005, you can debug ASP.NET applications using the integrated
debugger. To take advantage of the Visual Studio debugger, ASP.NET applications
must run in debug mode. The compilation mode can be set by modifying the
web.config file of the website accordingly.

 Visual Studio also lets you debug script files loaded by the browser at runtime.
First, let’s see how to configure IE for web-page debugging. Then, we’ll explain
how to set breakpoints in JavaScript files through the Script Explorer window.

B.4.1 Enabling script debugging in Internet Explorer

To enable script debugging in IE, open the Internet Options dialog and ensure
that the following items are deselected:

Figure B.23 With Fiddler, you can build custom HTTP requests and send them to the specified URL.
The editor lets you specify the headers as well as the payload of the custom HTTP request.

APPENDIX B

Tools for debugging Ajax applications 517
■ Disable Script Debugging (Internet Explorer)

■ Disable Script Debugging (Other)

Figure B.24 shows the Internet
Options dialog in IE 7, but the same
settings apply to IE 6.

 Once script debugging is enabled
in IE, you can set up the Visual Studio
environment. Let’s see how this is
done.

B.4.2 Setting breakpoints

Normally, the client code loaded in a
web page is contained both in script
tags in the page as well as in separate
files loaded by the browser. Visual
Studio 2005 doesn’t permit you to
set breakpoints in the JavaScript
code contained in an ASPX page.
But setting breakpoints in separate
script files (for example, JavaScript
files with the .js extension) some-
times result in errors being raised by
the Visual Studio debugger. Let’s see
what you can do to work around these limitations.

 To set breakpoints in the JavaScript code contained in an ASPX page, you must
break into the debugger at a specific location in the code. You can do this by add-
ing a statement with the debugger keyword at the specific location:

debugger;

The debugger keyword stops the execution of the program and enters the Visual
Studio debugger. In the debugger, a new tab opens with the source code of the
page you’re currently browsing. Now, you can set breakpoints in the source code
tab. Once you’ve set breakpoints, you need to reload the page in the browser in
order to debug it.

 Figure B.25 shows the source code tab with the debugger statement added to
the pageLoad function. Note that you’re setting breakpoints in the source code
tab and not in the original ASPX page, which is the inactive tab in the figure.

Figure B.24 To enable debugging with Visual
Studio, you have to configure some options in IE.

518 APPENDIX B

Tools for debugging Ajax applications
Sometimes, when you set breakpoints in JavaScript files, the debugger complains
at runtime, saying that “There’s no source code available for this location” and
displaying a warning dialog. This happens because script files are loaded dynami-
cally in the page. In such cases, you have to rely on the Script Explorer window to
set breakpoints in JavaScript files.

 To open the Script Explorer window, choose Debug > Windows > Script
Explorer. If you don’t see the Script Explorer menu item, choose Tools > Custom-
ize. In the new window, select Debug > Script Explorer. You can also drag the
Script Explorer icon to a Visual Studio toolbar to add it automatically.
The Script Explorer window lists all the script files loaded in the page you’re
debugging. If you double-click a file, the file opens in a new tab, and you can set
breakpoints; see figure B.26. Once you set breakpoints, you have to reload the
web page in order to debug the code.

Figure B.25 In Visual Studio 2005, you can set breakpoints in an ASP.NET page after
invoking the debugger.

APPENDIX B

Tools for debugging Ajax applications 519
In addition to using the debugger keyword, there are a couple other ways to break
into the Visual Studio debugger.

B.4.3 Other ways to break into the debugger

Another way to enter the Visual Studio debugger is to raise a client exception. You
can do this, for example, with the Sys.Debug.fail method provided by the
Microsoft Ajax Library, as shown in the following code:

function pageLoad() {
 Sys.Debug.fail('Debugger test');

 Sys.Debug.trace('Test');
}

An alternate approach is Sys.Debug.assert, which takes a condition and a string
with a message as arguments:

Sys.Debug.assert(0 > 1, 'Testing Visual Studio Debugger');

Figure B.26 The Script Explorer window lets you set breakpoints in script files loaded in the page.

520 APPENDIX B

Tools for debugging Ajax applications
Because the condition is evaluated to
false, IE prompts you, asking if you want
to enter the debugger, as shown in figure
B.27. Clicking OK stops the execution of
the client code and enters the Visual Stu-
dio debugger.

 Once the Visual Studio debugger is
running, you can debug the client code
in the same manner that you debug the
C# or VB.NET code and take advantage of
all the features provided by the Visual Stu-
dio debugger.

NOTE If you want to know more about the Visual Studio debugger, check the
MSDN documentation at http://msdn2.microsoft.com/en-us/library/
sc65sadd.aspx.

Figure B.27 Entering the Visual Studio debugger
using the Sys.Debug.assert method

http://msdn2.microsoft.com/en-us/library/sc65sadd.aspx
http://msdn2.microsoft.com/en-us/library/sc65sadd.aspx

Resources
ASP.NET AJAX framework
The ASP.NET AJAX site contains the latest information about the current status of the
framework as well as upcoming news and changes. The forums are also a valuable
resource for discussions and solutions to complex problems:

 Documentation—http://ajax.asp.net/docs/.

 Forums—http://forums.asp.net/default.aspx?GroupID=34.

 Homepage—http://ajax.asp.net.

 “How do I”—A collection of webcasts titled “How do I” with ASP.NET AJAX is available at http://
www.asp.net/learn/videos/default.aspx?tabid=63#ajax. Many of the videos are dedicated
to extenders shipped with the Ajax Control Toolkit.

 Patterns—An exhaustive and frequently updated list of Ajax patterns and links to implementa-
tions is available at the AjaxPatterns.org website, http://ajaxpatterns.org.

 ScriptManager—For a complete reference to the ScriptManager control’s properties, methods,
and events, as well as the other server controls in the ASP.NET AJAX framework, visit the
Server Reference section of the online documentation at http://ajax.asp.net/docs/mref/
R_Project.aspx.

Ajax miscellany

 The term AJAX—The original post from Jesse James Garret of Adaptive Path that coined the term
AJAX is located here: http://www.adaptivepath.com/publications/essays/archives/
000385.php.

 Ajax Control Toolkit—http://www.codeplex.com/AtlasControlToolkit. From the home page, you
can download the binaries and the source code for the latest release. You’ll find also the
official bug tracker for the project and useful information about becoming a contributor.

 Animations—A reference for all the animations defined in the animation framework is available
in the Toolkit’s sample website, which is also hosted online at: http://ajax.asp.net/ajax-
toolkit/Walkthrough/AnimationReference.aspx.
521

http://ajax.asp.net/docs/mref/R_Project.aspx
http://ajax.asp.net/docs/mref/R_Project.aspx
http://ajax.asp.net/ajaxtoolkit/Walkthrough/AnimationReference.aspx
http://ajax.asp.net/ajaxtoolkit/Walkthrough/AnimationReference.aspx
http://ajax.asp.net/ajaxtoolkit/Walkthrough/AnimationReference.aspx
http://www.codeplex.com/AtlasControlToolkit
http://www.codeplex.com/AtlasControlToolkit
http://ajaxpatterns.org
http://ajaxpatterns.org
http://ajax.asp.net
http://ajax.asp.net/docs/
http://www.asp.net/learn/videos/default.aspx?tabid=63#ajax
http://www.asp.net/learn/videos/default.aspx?tabid=63#ajax

522 RESOURCES
 PHP—Steve Marx, a Microsoft Ajax evangelist, has started a project called PHP for Microsoft Ajax
Library aimed at providing support for using the Microsoft Ajax Library with PHP. The project
is located on the CodePlex website, at http://codeplex.com/phpmsajax.

 web.config—For a more detailed reference on the customErrors section in the web.config file, see
http://msdn2.microsoft.com/en-us/library/h0hfz6fc(vs.80.aspx.

 Widgets—Omar Al Zabir, one of the creators of the PageFlakes website (http://www.page-
flakes.com) wrote an article that explains how to create a user interface that supports widgets
in ASP.NET AJAX. The article can be found at: http://www.codeproject.com/Ajax/Making-
GoogleIG.asp.

Tools

 Firebug—An essential tool for debugging JavaScript applications in Firefox, available at http://
www.getfirebug.com/.

 Web Development Helper—For IE users, a tool developed by Nikhil Kothari (http://www.nikhilk.net)
that you can use to debug HTTP traffic, log debug messages, and inspect scripts. It also
includes an HTTP request/response viewer with support for partial rendering.

XMLHttpRequest
The ASP.NET AJAX framework abstracts away any use of the XMLHttpRequest object; how-
ever, you should have a basic understanding of how it works under the hood. These URLs
offer more insight into the protocol and use of the control:

 Wikipedia—http://en.wikipedia.org/wiki/XMLHttpRequest

 W3C Working Draft—http://www.w3.org/TR/XMLHttpRequest/

Other items of interest

 HTTP protocol specification—http://www.ietf.org/rfc/rfc2616.txt.

 IntelliSense—IntelliSense in JavaScript files is a feature of the next version of Visual Studio, code-
name Orcas. The Web Development Tools Team has a post with the details in its official blog:
http://blogs.msdn.com/webdevtools/archive/2007/03/02/jscript-intellisense-in-orcas.aspx.

 MSN Virtual Earth mapping engine online SDK—http://dev.live.com/virtualearth/sdk/.

 YAHOO! Geocode service and other YAHOO APIs—http://developer.yahoo.com.

 Yahoo! Design Pattern Library—Describes and shows various visual patterns that can be
implemented with the Toolkit’s animation framework. Check them at http://
developer.yahoo.com/ypatterns/.

http://developer.yahoo.com/ypatterns/
http://developer.yahoo.com/ypatterns/
http://blogs.msdn.com/webdevtools/archive/2007/03/02/jscript-intellisense-in-orcas.aspx
http://blogs.msdn.com/webdevtools/archive/2007/03/02/jscript-intellisense-in-orcas.aspx
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/XMLHttpRequest/
http://en.wikipedia.org/wiki/XMLHttpRequest
http://www.nikhilk.net
http://www.nikhilk.net
http://www.getfirebug.com/
http://www.getfirebug.com/
http://msdn2.microsoft.com/en-us/library/h0hfz6fc(vs.80).aspx
http://msdn2.microsoft.com/en-us/library/h0hfz6fc(vs.80).aspx
http://codeplex.com/phpmsajax
http://codeplex.com/phpmsajax
http://www.pageflakes.com
http://www.pageflakes.com
http://www.pageflakes.com
http://www.codeproject.com/Ajax/MakingGoogleIG.asp
http://www.codeproject.com/Ajax/MakingGoogleIG.asp

index
Symbols

$addHandler method 51
$addHandlers method 51, 56,

285, 326
$alias 34
$clearHandlers method 56, 285
$create method 272–274, 281,

285, 288, 291, 300, 346
arguments 274

$create statement 318, 328, 434
$find method 272–273, 276,

281, 342, 379
syntax 281

$get command 34
$get method 50, 273, 302
$removeHandler method 51
.NET framework

comment syntax 449
@Register directive 328, 335,

354
__doPostBack 239
__doPostback 238
__doPostBack function 389
__EVENTTARGET field 239
_createAddHandler

method 459
_createRemoveHandler

method 459
_displayImage method 297, 366
_onFormElementClick 239
_onFormSubmit 239
_onFormSubmitCompleted

240, 243
_onImageElementLoaded

method 366

_onLoginButtonClicked event
handler 326

_onLoginComplete
callback 326

_onLoginFailed callback 326
_onTimerTick method 350
_playTransition method

366–367
_raiseEvent method 112
_setCssClass method 285
_startTimer method 350
_stopTimer method 350

A

abstract class 359
abstraction API 38, 48–54
acceptedDataType

attribute 483
property 478

accessor 91
action

in animation framework 363
defined 363

actions
XML Script 385, 387–398

activity diagram 307
Add method 61, 434

IShoppingCart interface
430, 434

add_eventName method 275
add_init method 109, 330
add_navigate event handler 468
add_propertyChanged

method 279

add_valueChanged method 342
AddComponentProperty

method 304
addCssClass method 53
AddElementProperty

method 303, 328
AddEvent method 304
addHandler method 48, 110
AddHistoryPoint 465
addHistoryPoint function 468
AddProperty method 303
addRange method 61
AddScriptProperty method 304
ADO.NET 472
AdventureWorks database 219

extracting product list 470
installing 497–498

AdventureWorksDB.msi
installer 498

Agility Team 333
AJAX

Asynchronous JavaScript and
XML 4

See also ASP.NET AJAX
Ajax

background request 334
Cascading Style Sheets 5
components 5
definition of 4–5
Document Object Model 5
for ASP.NET developers

115–116
JavaScript 5–6
XMLHttpRequest 5

Ajax agent 9
523

524 INDEX
Ajax Control Toolkit 521
controls, adding to Visual

Studio Toolbox 495
definition 333
extenders 333–342
installing 493–497
namespace 343
project 343
sample website 342
script files 340

Ajax Control Toolkit API
343–357

attributes 345
base classes 343–344

Ajax patterns 521
Ajax programming

browser compatibility 14
development issues 14–15
JavaScript 15

Ajax server extensions
controls 116
defining 115–116
guidelines 116

AjaxControlToolkit.Animation
namespace 359

AjaxControlToolkit.Anima-
tion.createAnimation
method 368

AjaxControlToolkit.Design
namespace 355

AjaxControlToolkit.dll 335
AjaxControlToolkit.dll

assembly 340
Ajax-enabled control 300, 333,

428, 431, 434
creating 343
overview 306–311

Ajax-enabled user control 437
AjaxLogin class 326
AjaxLogin control

creating 323–326
AjaxLogin script control

building 326–328
AjaxPatterns.org 521
Alert action 395
alert function 75, 271, 395
AlertAction 394
anchor tag 474
AND operator 103
animation 357–369

basics 359–360

creating 358
extender 360–364
with JSON 365–369

Animation class 357, 359
animation framework 357

actions 363
classes 357
families 358
reference 521

AnimationChildren
attribute 368

AnimationExtender 358, 360,
364–365

control 360–364
AnimationName attribute 368
Animations element 360, 364
AnimationTarget attribute

363, 368
anonymous method 81
API (Application Programming

Interface)
abstraction 48

App_Code directory 317
App_Data folder 337, 429
append method 60
appendLine method 60
application element 377
Application model

37, 42–47, 225
Application object 37, 42, 109,

269, 286, 375
application service

38, 183–192, 323
authentication 184–187
bridge 19
enabling 183–184
overview 19
profile 187–191

application/json 158
argument property 385
ArgumentException

exception 102
ArgumentOutOfRangeExcep-

tion exception 102
arguments variable 451
Array 61, 74, 76, 110

adding elements 76
built-in object 61
built-in object, extension

methods 61
empty 76, 85

JSON 86
literal 76, 85–86, 394
object 84
type 76
XML Script 392–393

Array.addRange method 62
Array.forEach method 62
ArticleAdd event 434, 439
asbx 177–178
ASP.NET 297

controls 287
sample site 117
site, configuring 118–120
site, enhancing 116–120
Web Services 142–160

ASP.NET 2.0
unsupported controls 263

ASP.NET AJAX 275, 291
architecture 15
client framework 16–18
Cold Fusion 16
controls, adding to Visual Stu-

dio Toolbox 490
defining 15
goals 22
installing 488–493
PHP 16
server framework 19
service proxies 18
web.config 120
XML Script 17

ASP.NET AJAX server controls
ScriptManager 19
UpdatePanel 19

ASP.NET AJAX-CTP enabled
website 426

ASP.NET AJAX-enabled
website 317, 427

configuring 489
ASP.NET Futures 18, 175,

375, 462, 470
base components 412
element wrapper

examples 291
enabled website 479
transformers, built-in 406

ASP.NET Futures CTP
installing 491–492

ASP.NET markup 374
ASP.NET page 285

Ajax-enabling 39–40

INDEX 525
ASP.NET validator 326
Assembly

attribute 328
property 306

assembly 306
resource 125

associated element 280–281,
293, 474

associative array 74
asynchronous

communication layer
160–166

definition 7
HTTP request 14
model 9
web programming 7–10

asynchronous postback 28, 130,
200, 202

anatomy 236–243
events after 243
events before 238–240
events during 240–242
foundation 236–238
series of events 233

asynchronous request 38, 347
sequential 263

AsyncPostBackTrigger 208
ControlID property 209
EventName property 209

Atlas 16
attribute 345

definition 344
authentication service 183–187,

323, 329
login function 186
logout function 189

authenticationService 183
element 329

auto-complete 308
extender 334–340
functionality 334–340, 348

auto-complete text box 309
testing 339

AutoCompleteBehavior
339–340

component 334
AutoCompleteExtender 347

control 335
automatic attribute 405
automatic property 405

AutoPostBack 26, 128
property 465

AutoSave pattern 190

B

Back button
behavior in Ajax

applications 461
backgroundColor property

365, 388
base class 91

constructor 97
base implementation

overriding 98
beginRequest event 234
BeginRequestEventArgs 252

postBackElement 252
behavior 279–287

accessing 281–282
creating 281
definition 267
describing 302–304
empty 280
in an extender 310
initialization 282
instantiating on the client

side 301
overview 280–281
vs. control 268

BehaviorBase class 344, 349
BehaviorID property 340–342
bidirectional mode 400
binding 277, 391, 397–398, 475

as component 402–404
declaration 400
direction 400
evaluating 399–400, 403
source 399–400
target 399–401

Binding object 405
bindings 266–409

element 401
property 399
tag 399

blur event 285
Book class 429–430, 433
bookId property 431
BookItem control 417, 420, 426,

431, 436

bookmark 461
adding richer support

468–470
behavior in Ajax

applications 461
BooksCatalog control

435, 437, 439
Boolean

type 76
value 285

bounds
of a DOM element 54

breakpoint
setting 517–519

bridge 175–182
communicating with 178
configuring 175–176
file 177–178
Flickr 176–182
technology 175
XPathBridgeTransformer 179
XsltBridgeTransformer 180

browser detection 65–66
browser history 465

managing during asynchro-
nous updates 462

build action 323
buildProviders 176
business layer 429–430
business object 430
BusinessLayer class 430–431
Button control 291
button tag 386

C

cache 455
Cache-Control 240
Calendar control 356, 365
CalendarExtender control 356
call

cross-domain 168
callback 11, 57–58, 149, 196,

326, 389
function 149

callBaseMethod method 98,
271, 396

canDrop method 424–425
CartZone control 422, 425–426,

431–432

526 INDEX
Cascading Style Sheets See CSS
CaseAnimation class 358
catch block 70
change event 398

DOM 350
charCode property 52
child

control 201
function 80

ChildControls 202
ChildrenAsTriggers 212

setting declaratively 211
setting programmatically 212

class 39
browser example 106–108
field 91, 285, 293
fully qualified name 91, 94
in JavaScript 89–94
sealed 236

clear method 60–61
clearTimeout function 350
click

attribute 386
element 388
event 296, 326, 379, 385–386

client
component 43
component model 43, 265
exception 69, 99, 452
functionality 287, 308
namespace 91, 93
overview 43
proxy 472, 476

client class 89, 456
defining 90

client control
created as an element

wrapper 378
encapsulating DOM element

into 483
client delegate See delegate
client event

exposing 458
client page lifecycle

overview 43–47
client property 91

exposing 456
mapping to server

property 314
client-centric development 142

client-centric development
model 20–21

example 30–34
web service 30

ClientCssResource attribute 345
ClientID property 435
ClientPropertyName

attribute 345, 353–354
ClientScriptManager 258, 262
ClientScriptResource

attribute 345, 352
client-side

event 245
event model 233–236
handling 245–249
page lifecycle 468

clone method 61
closure 79–81, 457
code-behind 464

file 322
CodePlex 333, 464, 493

interacting with 496–497
website 342

CollapsiblePanel extender 356
Collection class 110, 112
color burst 364
ColorAnimation class 357, 365
command property 385
CommandName property 436
comments

XML 447–449
communication channel

drag and drop 413
communication layer 89
CompareValidator 261
completed event 391
complex property

XML Script syntax 392–394
component 38

accessing 276
client 460
client, creation process 269
code reusability 43
creating 273–276
creation process 377
custom, in XML Script 380
definition 265
dispose method 269
encapsulating drag-and-drop

logic 412
event handling 275

exposing events 277
handling events 277
initialization 274–275, 453
initialize method 269
instantiation 45
lifecycle 268–269, 271
nonvisual 267–268
passing references 275
trivial 270
visual 267–268, 279–280, 287

component model 38, 92–270
ComponentReference

attribute 346
components

client hierarchy 267
element 376, 382

CompositeControl class 322
compression 455
ConditionAnimation class 358
ConfirmPostBack action 396
confirmPostBackAction

element 397
constructor 79, 81–82,

90, 285, 457
concatenating name 446

container 474
component model 269–270
using as associated

element 292
container element 474
contains method 61
ContentTemplate 201–202
ContentTemplateContainer

property 203
Content-Type 241
context 56–57
context object 58

drag and drop 418
contract

defined by interface 99
control 287–297

accessing 289
creating 288
definition 267
describing 304–305
element 380
empty 287
ID 289
instantiating on the client

side 301
lifecycle 296

INDEX 527
control (continued)
overview 287–288
property 289
in a script control 310
vs. behavior 268
in XML Script 378–380

Control class 316
ControlBase class 344
Cooper, Alan 282
count parameter 337
counter 404
createEvent method 458, 460
createHelper method 458
createProperty method 457
cross-browser

event object 49
cross-domain

call 168
requests 166–167

crunching 454–455
CSS 48, 53–54, 279, 480
CSS class

changing
programmatically 282

culture
UI 124

CultureInfo object 63
CurrentCulture object 63
currentState element 468
custom action 392, 394–398
custom component

in XML Script 380
custom object 79

creating 81–82
Customer component 277
customErrors 139

Off 139
On 139
RemoteOnly 139

CustomValidator 261

D

data binding 427, 431–432
declarative 470–476

data layer 429–430
data path 402
data property 478–479
DataBoundControl class 322
dataContext attribute 399, 401

dataContext property 475
DataGrid control 217
data-interchange format 86
DataList 213, 465

control 431, 436–437, 473
dataPath attribute

399, 401–402, 475
dataType property 478
date

ISO 8601 88
in JSON 88
UTC format 88

date literal 88
Date object 63
Date.parseInvariant method 64
Date.parseLocale method 64
DateTimeService class 390
debug

script versioning 40
debugging 40, 66–69, 445

client code 444
JavaScript, in Visual

Studio 2005 516–520
scripts in IE 516–517

declarative code 398
declarative language

bindings 277
defaultRedirect 139
delegate

in JavaScript 54–56
in the .NET framework 55

deploying
JavaScript files 122

dequeue method 61
descriptor property 384
deserialize method 88
Designer attribute 345, 352
DetailsView control 131
DHTML 128
diagnostics

in Web Development
Helper 511–512

dictionary 74
direction

attribute 400, 483
property 405, 478

dispose event 266, 275
dispose method

component 265
div element 292

documentation engine
XML tags 449

DOM (Document Object
Model) 38, 266

enhancing with behaviors 279
event handler 78
overview 48–58
subtree 291
tree 48

DOM element 281, 310,
402, 453

associating with client
control 326

controls associated with 378
drag and drop 411
draggable 477
encapsulating into client

control 483
handling events raised by 282
ID 483
mapping to controls 475
plugging in client logic 287
programming against 268
upgrading 379

domElement property 452
dotted notation 401
drag and drop 38, 411

data access 414
engine 411–414
engine, overview 413–414
mode 420
operation status 424
shopping cart 414–439
in Windows 420

drag data 421, 425
drag See drag and drop
drag visual 418
dragDataType attribute 483
drag-drop list 477–479, 484
DragDropList behavior 477–479
dragDropList element 483
DragDropManager object

412, 422
draggable item 412–413, 420

creating 416–418
DraggableListItem

behavior 477–479
draggableListItem element 484
dragMode

attribute 483
property 478

528 INDEX
dragVisualTemplate
property 479

drop cue 478
drop method 424–425
drop See drag and drop
drop target 412–413

creating 422–423
drop zone 478

See also drop target
drop-cue template 481
dropCueTemplate

property 478
tag 483

dropTargetElement
property 478

Duration attribute 368
duration property 359, 362

E

e parameter 409
element

adding to array 76
element wrapper 268, 287, 378

creating 289–292
elementInteger property 452
elementMayBeNull

property 452
ElementReference attribute 346
elementType property 452
embedded resources 121
empty

array 76, 85
object 75, 384
string 85
template 473, 481

EmptyBehavior class 280
EmptyControl class 287
emptyTemplate

property 478
tag 475, 483

EnableAction 363
enableCaching attribute 455
enableCompression

attribute 455
enabled property 405
EnableScriptGlobalization

property 63
ended event 360

endRequest 255
event 235, 243

EndRequestEventArgs 255
error property 256
errorHandled property

255–256
endsWith method 59
EndValue attribute 365
Enter key

ignoring keypress 289
enumeration 101–103

type 102
error

code, obtaining 163
non-HTTP 163
server-returned HTTP 163
typed 69–71

error handling 163–166
client-side 255–256

Error object 69, 451–452
Error.create method 70
Error.notImplemented

method 69
escape character

JSON 88
eval function 87
evaluateIn method 403, 405
evaluateOut method 403, 405
event

arguments 112, 460
automating creation 458–461
client component model 266
descriptor 385
exposing in client class 276
exposing in JavaScript

109–112
handling in XML Script 387
raised by components 45
raised by DOM element 51
raising 109
subscribing to and

handling 112–113
synthetic 350

event descriptor 385
event handler 55, 78, 112

adding 109
detaching from element 56
disposing 56
removing 109

event model 45, 108–113
event object 52

event viewer
client-side 243–256

eventArgument attribute 389
events property 385
exception

custom 70
message 70
type 70

Executor
get_responseData 162

executor 161–162
extended control 308
extender 311–318, 333–342, 427

animation 360
building 347–355
creating 314–316
instantiating

programmatically 318
model 308
overview 308–311
project, creating 348–349
properties 352–354
provider 309
registration 312–313
using 316–318

ExtenderBase folder 343
ExtenderControl class 311–312,

314, 343
ExtenderControlBase class

340, 343, 349, 351–352
ExtenderControlBaseDesigner

class 349, 355
ExtenderControlEvent

attribute 345, 354
ExtenderControlMethod

attribute 345
ExtenderControlProperty

attribute 345, 353
extensibility 83–84
Extensible Markup Language

See XML

F

fade effect 361, 363, 366, 368
FadeIn element 363
fadeIn variable 368
FadeInAnimation class 357, 369
FadeOut element 363
FadeOutAnimation class

357, 363

INDEX 529
feedback
providing to user 133–135

Fiddler
debugging HTTP with

512–515
FileUpload control 263
Firebug 66, 147, 155, 339, 522

installing 501
overview 502–505
using 500–505

Firefox 10, 49, 146–147, 388
first-class function 77
flags

used in enumerations 103
Flickr 4
flickr.photos.search 178
focus event 285
focusCssClass property 286
for/in

construct 62
foreach construct 75
forEach method 61
for-in construct 75
form tag 285, 426
format method 58–59, 63
formatLocale method 63
FormattingBehavior

behavior 282, 302, 314, 316
extender 313–316

FormattingExtender
class 317
Extender 314

forms authentication 184, 329
fps property 359, 362
fully qualified name 91, 94, 382
function 77–78

anonymous 77, 445
arguments 77
assigning to a property 445
child 80
first-class 77
global 78
keyword 85
literal 85
as method 78
nested 79
in the prototype object 83
scope 78–81
shared 61

Function object 89
Function._validateParams 450

Function.createCallback
method 57–58

Function.createDelegate 55, 81

G

GAC 23, 39
GenerateScriptType 157
generic event

raising 460
Generics 153
GET

HTTP verb 390
get_direction method 408
get_dragDataType method 419
get_dragMode method 419
get_dropTargetElement

method 423–424
get_element method 280, 287,

350, 388
get_event method 111
get_events method 277, 460
get_history method 468
get_propertyName

method 278–279
get_stateString function 469
get_targetPropertyType

method 408
get_transformerArgument 408
get_Value method 342
get_value method 408
getBaseMethod method 104
getBaseType method 104
GetBookById method 437
GetBooks methods 430
GetBooksById method 430
getBounds method 54
getDescriptor method 384
getDragData method 419
getHandler method 112
getInterfaces method 104
getLocation method 54
getName method 104, 106
GetPropertyValue method 353
GetScriptDescriptors

method 316, 328, 435, 438
GetScriptReferences

method 311, 316, 319, 328,
435, 438

getStateString method 469

getter 92, 456
GetTimeAsString web

method 389
GetWebResourceUrl

method 328
global

function 78
object 78
variable 56

Global Assembly Cache See GAC
global namespace

declaring in XML Script 380
lack of prefix 381

globalization 63–64
Google 476
Google Maps 4–5, 167

Back button behavior 461
GridView control 131, 213, 217,

291, 347
filter 216–227
filtering

on the fly 217
paging and sorting 221

H

handle
attribute 484
property 479

helper 455–460
hexadecimal notation 365
HideAction 363
history

managing from
JavaScript 467

unencrypted state 466
History class 468
History control 462, 468

adding to page 465
history repository

adding entry 465
HistoryEventArgs type 467
hoverCssClass property 286
HTML (HyperText Markup

Language) 42
HTTP (Hyper Text Transfer

Protocol)
debugging 67, 339
debugging with Fiddler

512–515

530 INDEX
HTTP GET 158–159, 167–168
HTTP handler 122

loading web resource 351
ScriptResource.axd 454

HTTP POST 167
HTTP request

asynchronous 347
HTTP status codes 163

Firefox 166
Internet Explorer 166
Opera 166

HTTP traffic
inspecting in Web Develop-

ment Helper 507–509
reducing 351

HTTP verb
GET 390

HyperLink control 291

I

IArticle interface 430–431
IComparable interface 100
id property 274, 281
IDisposable interface 265
IDragSource interface

implementation 420
IDropTarget interface

implementation 425
IEnumerable type 312
IExtenderControl

interface 311–312, 314, 343
IFRAME 5, 197
IFrameExecutor 162
ignoreEnterKey property 289
Image control 433
img element 292, 368
imperative code 388, 393
imperative syntax

creating animations 358
vs. JSON 369

implementsInterface
method 104

indexed notation 75–76
indexOf method 61
inheritance 89, 95–99

chain 97
in JavaScript 90
prototype-based 95–97
resolution 105

inheritsFrom method 106
init attribute 377
init event 45, 286

hooking up declaratively 375
init stage 47, 291, 300

client page lifecycle 270
initialize method 453
initializeBase method 97, 280
initializeRequest event 234, 239

aborting a postback 250–251
InitializeRequestEventArgs 250

cancel property 251
postBackElement 250

innerHTML
property 59

INotifyDisposing interface 266
INotifyPropertyChange

interface 266
in-place edit 282, 285, 313
input element 379
insert method 61
installation folder

contents 489
instance method 446
instanceof operator 105
integer property 451
IntelliSense 447, 449, 522
interface 99–101

definition 265
implementing 307
method 101
type 90

Internet Explorer
behaviors 279
drag and drop 413

interval attribute 405
InvalidOperationException

126, 211
InvariantCulture object 63
InvokeMethod action

389, 391–392, 398, 405
IScriptControl interface

311, 318–320, 326, 343, 431
implementation 434, 437

isDomElement property 454
isEmpty method 60
IShoppingCart interface 430,

434
isImplementedBy method 104

isInstanceOfType method
104–105

item
draggable 476, 478
template 473

ItemCommand event 436
itemTemplate tag 475
itemTemplateParentId

attribute 475
iterations property 362
iterator 312

J

JavaScript
classes in 89–94
debugging in Visual Studio

2005 516–520
disabled 133
files, deploying 122
injecting during partial

postback 258–260
proxy 31
simplifying development 58–

71
XML comments in 447–449

JavaScript file
loading with

ScriptManager 306
JavaScript object

type descriptor 384
JavaScript Object Notation See

JSON
javascript scheme 381
join method 60
JSON 6, 86, 89, 153, 176, 304

and animation 365–369
array 305
creating animations 358
data 87
hijacking 158
parser 87
serialization 17
serializing array 338

K

keypress event 49, 52,
225, 290, 350

Kothari, Nikhil 506

INDEX 531
L

Label control 268, 291, 404
language

loosely typed 77
Layered web application 429
layers

application 429
layout template 473
layoutElement attribute 475
layoutTemplate tag 475
LengthAnimation class 357
lifecycle

page 130
server 42

line break 60
link rot 469
ListView control 473–476

associating with template
HTML 475

defining global layout 470
listView tag 475
literal 84–85
Live.com 4, 7, 476
load event 18, 34, 45,

225, 235, 391
isPartialLoad 247

load stage
client page lifecycle 270

localeFormat method 59
localization 17, 124–126
location

of a DOM element 54
logical navigation 462–468
logical view

re-creating page state 465
login button 326
Login control 322, 326–330

adding Ajax 322
loginUrl property 184
loosely typed language 77

M

markup
structured 479

markup code 287, 291
of a binding 403
XML Script 380

Marx, Steve 522
mashup 20, 169–183

master page 120, 127
MaximumOpacity attribute 363
mayBeNull property 451
Menu control 263
message

attribute 397
board application 192
property 396
sending to browser 502

metadata-driven API 344–346
method

anonymous 81
descriptor 385–386
JavaScript 83, 445
property 385
in the prototype object 83
shared 84
static 61, 84

methodName attribute 391
Microsoft Ajax Library 142, 225,

411, 445
accessing authentication

service 323
actions, built-in 387
adding comments to

JavaScript 447
application model 17
components 17
example program 45–47
features 37–39
and JSON 88–89
overview 16–17, 37–41
type system 16

Microsoft Developer Network
See MSDN

microsoft surface 182
Microsoft.Web.Preview

assembly 375
Microsoft.Web.Preview.dll 175
Microsoft.Web.Preview.dll

assembly 411
Microsoft.Web.Preview.Services.

BridgeBuildProvider 176
Microsoft.Web.Preview.Services.

BridgeRestProxy 178
Microsoft.Web.Preview.UI.Con-

trols namespace 467
MIME (Multipurpose Internet

Mail Extensions)
type 351

MinimumOpacity attribute 363

MinimumPrefixLength
property 336

mousedown event 416, 418
mouseout event 285
mouseover event 285
MoveAnimation class 358
Mozilla 10
MSDN 279
mutator 91

N

name property
281, 342, 385–386

namespace 93–94, 108
client 91, 93
registration 94

Namespace attribute 328
naming convention

for events 109
for properties 92

Navigate event handler 466
navigateURL property 476
navigation

logical 461–470
navigator object 65
new

operator 59, 75, 81,
83, 272, 274

NOT operator 103
notImplemented

exception 100, 102
now method 84
Number

object 64
type 76

O

object
custom 79
custom, creating 81–82
detection 10
dump 67
external, subscribing to

even 460
global 78
JavaScript 75–76
JSON 86
literal 75, 85–86, 392

532 INDEX
object (continued)
model 89
prototype 82–83
typing 105–106
XML Script 392

Object type 75
object-oriented

construct 89
language 74

OnClick element 360
onDrag method 419–420
onDragEnd method 419–420,

422, 431
onDragEnterTarget

method 424
onDragInTarget method 424
onDragLeaveTarget

method 424
onDragStart method 419–421
onGetComplete function 476
onGreetButtonClick

function 379
onKeyPress event handler 291
OnLoad element 360
onNavigate event handler 468
OnPreRender method 321, 328
OnRender method 321
onSequenceEnded

function 368
OnTextChanged property 353
OnTick event 136
OnUpdated element 364–365
OnUpdating element 364
onValueChanged event

handler 342
OpacityAction 363
opaque ID 349
Opera 10
optional property 451
OR operator 103
Orcas 145, 183, 191

IntelliSense 449
Outlook Web Access 5
override 98–99

P

Page class 258
ClientScript property 258

page element 376, 380, 382

page lifecycle 8, 34, 42,
130, 200, 207

client 269
Init event 207, 209–210, 212
Load event 207
PreRender event 211
similarity to PageRequest-

Manager events 233
Unload event 207
and UpdatePanel 201

Page object 37, 42
page state

last, retrieving 467
Page.Form.Controls

collection 318
Page_Load 203

method 439
PageFlakes.com 20, 476, 522
pageInit function 286, 377
pageLoad event 175
pageLoad function 46, 57,

468, 476
pageLoaded 243, 253

event 235
PageLoadedEventArgs 255
pageLoading 253

event 234, 243
PageLoadingEventArgs 254
PageMethods 159–160
pageNavigate event handler 468
PageRequestManager

38, 232–243
_initialize method 237
_updateControls method 237
abortPostBack 250
add_beginRequest 247
add_endRequest 247
add_initializeRequest 247
add_pageLoaded 247
add_pageLoading 247
getInstance 247–248
isInAsyncPostBack

property 252
OnInit event 237

pageUnload function 46, 52
Panel control 356, 433
Parallel element 362
ParallelAnimation class 358, 362
param tag 449
parameter descriptor 386, 449,

451, 453

parameter validation 77
parameters

property 392
validating 449–454

params property 386
parse method 61, 64

enumerations 102
parseFromMarkup method 383
parseLocale method 64
parseNode method 382
partial rendering 38
partial-page rendering 195
partial-page update 127–140
pause method 359
performAction method

394–395
performance 52
permalink 468
Pet class 89
photo

URL, saving 292
PhotoGallery control 297, 304,

365–369
creating 292–297

PHP–Hypertext
Preprocessor 176, 522

play method 359
Point constructor 84
positioning 53–54
postback 117, 395

aborting 250–251
asynchronous 19, 130
definition 9
notifying user 252–253
partial, injecting

JavaScript 258–260
priority, managing 251–252
shopping card 439

PostBack action 389, 395–396
PostBackTrigger 208

ControlID property 211
Event name property 211

prefixTest parameter 337
presentation layer 429–431
preventDefault method 52, 291
PreviewDragDrop.js file

411, 478
PreviewScript.js file 291, 374,

406, 411
private

member 91

INDEX 533
private (continued)
method 450
scope 92, 452

production code 454
validating parameters

453–454
profile

adding properties 188
reading from 189
updating 189–190

profile service 183, 187–191
autosave 190
load function 189
save function 189

profileService 183
properties property 385
property

automating declaration
456–458

client 91–93
of JavaScript objects 75

property attribute 365, 388,
399, 402

property change
notification 276–279,
398, 403

property descriptor 385, 392
propertyChanged event

277, 402
adding event handler 279

PropertyKey attribute 365
propertyKey attribute 388, 402
prototype

chain 95
object 74, 90, 95,

280, 294, 446
property 166

provider
of client functionality 308

proxy
definition 18

PulseAnimation class 357

R

raisePropertyChanged
method 277, 403

RangeValidator 261
Really Simple Syndication

See RSS
real-time input processing 347

reference
in the prototype object 83
required 453

references element 382
reflection 38, 104–108, 345, 383

methods 104–106
RefreshPanel 196
registerClass method 90, 105,

265, 271, 422, 425
inheritance 96

RegisterClientScriptBlock 259
RegisterClientScriptInclude 259
RegisterClientScriptResource

259
registerDropTarget

method 413, 422–423
registerEnum method 102
RegisterExtenderControl

method 312
registerInterface method 100
RegisterScriptControl

method 320
RegisterScriptDescriptors

method 311–312, 319–320
RegisterStartupScript 259–260
registration

script control 320–321
registration procedure 307
RegularExpressionValidator 261
release

script versioning 40
remote procedure call 142
remote scripting 5
remove method 61
remove_init method 109
removeAt method 61
removeCssClass method 53
removeHandler method 110
Render method 328
RenderMode

Block 205
Inline 205

Repeater 129, 213
control 431–432, 434–435

Representation State
Transfer 142

request
HTTP 67

Request Headers 240
Request object 239

RequiredFieldValidator 261
RequiredProperty attribute 346
RequiredScript attribute 345
ResizeAnimation class 358
response

HTTP 67
Response.Write 262
REST 142, 176
result parameter 149
role service 183, 191–192

get_roles 192
isUserInRole function 192
load function 192

RPC 142
RSS 463
RSS feed 134
runtime error 450

S

Safari 10, 447
Samples.Customer class 460
Samples.PhotoGallery class 293
satellite assembly 124
ScaleAnimation class 358, 361
ScaleFactor attribute 362
scope 55

of a function 78, 80–81
private 92

script
callback 195
debugging in IE 516–517
debugging in Web Develop-

ment Helper 509–510
prefix 382
reference 306, 344
tag 307, 330
tracing in Web Development

Helper 509–510
versioning

40–41, 444, 449–455
script control 309, 319–330, 427

design strategies 322
model 309
overview 308, 311
registration 320–321
using in web page 328–330

script descriptor 300–306, 344
hierarchy 300–302
methods 302–304

534 INDEX
script file 306, 308
compressing 454–455
crunching 454–455
reducing size 455
referencing in web page 328
serving to browser 454

script user control
creating 344

ScriptAction 363
ScriptBehaviorDescriptor

class 301–304, 438
ScriptComponentDescriptor

class 300–301
ScriptControl class 311, 343
ScriptControlDescriptor

class 301, 304–305, 435
ScriptControls assembly 330
ScriptDescriptor class 300
ScriptLibrary folder 317, 426,

431, 435
ScriptManager 39, 120–126,

146, 178, 199, 208, 210,
236, 245, 343, 468

adding 25
adding to a master page 120
AllowCustomErrorsRedirect

property 140
AsyncPostBackError

event 138
AsyncPostBackSource-

ElementID property 239
EnablePageMethods 159
EnablePartialRendering

property 245
EnableScriptLocalization

property 124
error handling 138–140
GetCurrent method 121, 131
IsInAsyncPostBack

property 131, 237
localization 124

benefits 126
OnInit event 236
render event 237
ResourceUICultures

property 125
ScriptMode property 125
ScriptReferences object 122
Scripts property 122

ServiceReference object
123, 147, 178

Services property 123, 147
ScriptManager control 285, 301,

305, 313, 320, 374, 434, 454
enabling drag and drop 411

ScriptManagerProxy 126–127
ScriptMethod 158

attribute 31, 390
UseHttpGet property 158

ScriptMode property 41
ScriptPath property 316–317,

340
ScriptReference 41

class 306, 316, 319, 435
ScriptResource handler 454
ScriptResource.axd 121–123
scriptResourceHandler

element 455
ScriptService attribute 145, 170,

390, 472
ScriptUserControl class 344
ScrollMessage transformer 408
security in depth 158
sender parameter 409
Sequence element 362
SequenceAnimation class

358, 362
serialize method 88
server control 306

creating with ASP.NET 322
implementing Ajax-enabled

control 307
instantiating client

components 307
server extensions

timer 135
server trace 262
server type

creating on client 155–157
Server.Transfer 262
server-centric

development model 21–22
example 23
History control 462
model 427

ServiceMethod property 336
ServiceMethodRequest

class 390, 392
serviceMethodRequest

element 391

ServicePath property 336
ServiceReference

InlineScript property 147
Path property 147

services
registering 123

Session 433
session 187
set_data method 476
set_text method 379
set_value method 408
setLocation method 54
SetProperty action 387–389, 391
SetPropertyAction class 387
setPropertyAction element 388
SetPropertyValue method 353
setter 92, 456
setTimeout function 349
shared

function 61
method 84

shopping cart 415, 427–439
ShoppingCart class 430
ShoppingCart control

432, 434–435, 437, 439
SingleChildControlCollection

202
Size enumeration 101
skeleton class 280
slider extender 341–342
SliderBehavior 341
SOAP 176
span element 292, 379, 474, 479
SQL Server 118
SQL Server Express 219
SqlDataSource 223

control 221
stack trace 40, 70

informative 445–447
startDragDrop method 413, 416

arguments 418–419
started event 360
startsWith method 59
StartValue attribute 365
state string

retrieving 469
State variable 467
static method 61, 84
status code 68
stop method 359

INDEX 535
string
builder 59–60, 108
empty 85
literal 85
manipulation 58

String object 58–59
methods of 59

String type 76, 84, 385
StringBuilder 154
StringCollection object 453
strongly typed collection 453
structured markup 479
style object 54, 365
StyleAction 363
subscribing

to events 112
summary tag 449
synchronous model 8
synthetic event 350
Sys namespace 39, 380
Sys._Application class 90, 269
Sys.Application 235, 468

events 44–45
load event 243

Sys.Application object 272, 375
objectives 42

Sys.Application variable 267
Sys.Application.add_init 246
Sys.Application.add_load 246
Sys.Application.addComponent

method 274
Sys.Application.findComponent

method 272
Sys.Browser object 59, 65
Sys.Browser.agent object 66
Sys.Component 276

class 265, 287, 301,
383, 395, 460

Sys.Component.create
method 272

Sys.CultureInfo object 63
Sys.Debug 262

class 66
traceDump function 155

Sys.Debug.assert method 519
Sys.Debug.fail method 519
Sys.Debug.trace method

67, 355, 502
Sys.Debug.traceDump

method 67

Sys.EventArgs.Empty 162
class 112

Sys.EventHandlerList class
110, 460

Sys.EventHandlersList class 277
Sys.IContainer interface

91, 269, 276
Sys.INotifyPropertyChange

interface 277
Sys.Net namespace 380
Sys.Net._WebRequestManager

163
Sys.Net.WebRequest

161–162, 239
add_completed 161
invoke 163

Sys.Net.WebRequestExecutor
162

executeRequest 162–163
Sys.Net.WebRequestManager

163
get_object 162
get_xml 162

Sys.Net.XMLHttpExecutor 162
Sys.Preview namespace 381
Sys.Preview.Action class 394
Sys.Preview.Binding class 402
Sys.Preview.BindingBase.Trans-

formers object 405
Sys.Preview.BindingDirection

enumeration 403
Sys.Preview.BindingEventArgs

class 408
Sys.Preview.Data namespace 380
Sys.Preview.InvokeMethod-

Action class 385
Sys.Preview.ITypeDescriptor-

Provider interface 384
Sys.Preview.MarkupParser

variable 382
Sys.Preview.Net namespace 381
Sys.Preview.Net.ServiceMethod-

Request class 389
Sys.Preview.Services.Compo-

nents namespace 380
Sys.Preview.Timer class 405
Sys.Preview.UI namespace 380

element wrappers 379
Sys.Preview.UI.Button

class 385
control 379

Sys.Preview.UI.CheckBox
control 379

Sys.Preview.UI.Data
namespace 381

Sys.Preview.UI.Data.ListView
class 473

Sys.Preview.UI.DragDropList
class 478

Sys.Preview.UI.DragDrop-
Manager variable 412

Sys.Preview.UI.Draggable-
ListItem class 478

Sys.Preview.UI.DragMode
enumeration 420

Sys.Preview.UI.Effects
namespace 381

Sys.Preview.UI.GenericDrag-
DropManager class 413

Sys.Preview.UI.HyperLink
control 379

Sys.Preview.UI.IDragSource
interface 414, 419–422

Sys.Preview.UI.IDropTarget
interface 414, 423–426

Sys.Preview.UI.IEDragDrop-
Manager class 413

Sys.Preview.UI.Image
control 380

Sys.Preview.UI.Label
control 379

Sys.Preview.UI.Selector
control 380

Sys.Preview.UI.TextBox
control 380

Sys.PropertyChangedEventArgs
class 278

Sys.Serialization.JavaScript-
Serializer 154

object 88
Sys.Services.AuthenticationSer-

vice.login method 323
Sys.StringBuilder class 59–60
Sys.UI namespace 268, 380
Sys.UI.Behavior class

267, 280, 344
Sys.UI.Control class 267, 287,

293, 344
accessing base

functionality 380
Sys.UI.DomElement class 48

536 INDEX
Sys.UI.DomEvent class 48
properties 52

Sys.WebForms.PageRequest-
ManagerParseError-
Exception 261–262

System.Collection.Generic 152
System.ComponentModel

namespace 267
System.ComponentModel.

Component class 265
System.EventArgs.Empty 162
System.Web.Extensions 120

assembly 300, 489
system.web.extensions

element 455
System.Web.Extensions.Design

assembly 489
System.Web.Extensions.dll 23
System.Web.Script.Services

31, 145
System.Web.Script.Services.

ScriptHandlerFactory 176
System.Web.UI namespace

300, 322, 343

T

tag mapping 261
target

attribute 388–389, 397, 401
control 308
property 359

targetControl parameter 311
TargetControlID property

317, 336, 339, 355, 360
TargetControlType

attribute 316, 352
Temperature class 100
template

cloning 474
declaring for drag visual 478
empty 473, 481
item 473
layout 473
supported by ListView 473

text box 49
auto-complete 334–340
enhancing 282

text field
limiting input 49

text property 391, 404
text/html 241
text/javascript MIME type 351
text/plain 241
text/xml-script 375, 382
TextBox 268, 287, 289

auto-complete 333
class 308
wiring in-place edit

functionality 314
TextChanged

event 224
extender 347–355

textChanged event 349
TextChangedBehavior

class 349–351
TextChangedExtender

class 351–354
this keyword 55, 78
throw keyword 69
tick event 405
Timeout property 349, 353
timeouts 150
timer

component 405
starting 350

Timer control 135–138
Interval property 136

ToDetailsUrl function 476
Toolbox

Visual Studio 335
Toolkit

animation framework See ani-
mation

extender, building 347–355
Toolkit API See Ajax Control

Toolkit API
Toolkit See Ajax Control Toolkit
toString method 60

enumerations 102
toUpperCase method 76
tracing 262
transform

attribute 405
event 405

transformer 404–409, 475
Add 405, 407
argument 406, 408
Compare 407
CompareInverted 407

creating custom 408–409
Invert 407
Multiply 406–407
RSSTransform 407
ToLocaleString 407
ToString 407

transition
animated 366
static pages to DHTML 357

TreeView control 263, 291
trigger 208–213

asynchronous 208–210
manual 211–213
postback 210–211

trim method 59
trimEnd method 59
trimStart method 59
try-catch 69
Type alias 94
type checking 453
type descriptor 383–386, 395

in .NET 384
structure 384–386

type name
registering 90

Type object 457
type property 385, 451
type system 89, 104

Microsoft Ajax Library 384
Type.isClass method 104
Type.isInterface method 104
Type.isNamespace method 104
Type.registerNamespace

method 94
typeof operator 105

U

UI
culture 124, 126

unique URL 468–470
unload event 34, 45, 225
unload stage

client page lifecycle 270
unregisterDropTarget

method 423
update mode 203–205
UpdateMode

Always 203
Conditional 203

INDEX 537
UpdatePanel 38, 199, 318, 322,
364, 427, 434, 438, 462

adding content
declaratively 201

adding content
programmatically 202

advanced techniques 213–216
Always update mode 133
asynchronous trigger

208–210
AsyncPostBackTrigger 209

property 226
basics 201–207
caveats and limitations

262–263
ChildrenAsTriggers

property 211–212, 238
Conditional update

mode 133
content 201–203
ContentTemplate

property 130, 249
ContentTemplate tag 201
cookbook of techniques

256–262
design view 132
EnablePartialRendering

property 237
evolution 195–196
introducing 128–131
nested 216
page lifecycle 207
performance drop,

solving 256–258
postback trigger 210–211
postback trigger added

declaratively 211
postback trigger added

programmatically 210
PostBackTrigger 211
PostBackTrigger

property 210, 262
RegisterAsyncPostBackCon-

trol method 209
RenderMode property

205–206
repeating 213–215
simple example 27, 196, 200
SupportsPartialRendering

property 237
trigger 208, 213
trigger added

declaratively 209
trigger added

programmatically 208
Triggers collection 136
Update method 203, 212
UpdateMode property

133, 203–205, 216
UpdateMode tip 205
UpdatePanelTrigger 210
using with a

DropDownList 128
working with GridView

216–227, 256–258
working with multiple 131

UpdatePanelAnimation
extender 364–365

UpdatePanelAnimation-
Extender 365

UpdatePanelTriggerCollection
210

UpdateProgress 28–29, 134, 234
AssociatedUpdatePanelID

property 134
ProgressTemplate

property 134
URL

unique 461–470
url attribute 391
UseHttpGet parameter 390
user control 196
user experience

improving with drag and
drop 411

user input
validating 49

user interface
design 282
more appealing 357
PhotoGallery control 292

userContext parameter 385

V

validation
parameters 449–454

ValidationSummary 261
validator 260–261
value

JSON 86
value attribute 388

valueChanged event 341
variable

namespaced 90, 94
ViewState 241, 263, 316, 353
Virtual Earth 167, 169
Visual Studio

add reference 119
Designer 355–357
extender template 348
IntelliSense 447
new site dialog 118
new website 23
Orcas 263
template 323
toolbox 116

Visual Studio 2005
debugging JavaScript in

516–520
Visual Studio Toolbox

adding Ajax Control Toolkit
controls 495

adding ASP.NET AJAX
controls 490

W

WCF 145
web application

layered 429
web control 352

definition 300
Web Developer Helper 66, 155,

240, 506–512, 522
installing 506
launching 506

web form
in-place editing 282
preventing submission 289

web method 336, 471
calling 148
invoking 389
parameters 149

web programming
asynchronous 7–10

web resource 306, 340, 351, 454,
478

embedding 328
Web Service 37

configuring 146
creating 470–473

538 INDEX
Web Service (continued)
external 166–183
methods, invoking from

JavaScript 146–150
proxy 146
setting up 336

Web Services 142
ASP.NET 142, 160
bridge 19
complex types 150–157

web user control 322, 430, 435
web.config 260
web.config file 41, 45, 120, 489
webcasts 521
WebRequestExecutor

error handling 164–166
get_statusCode 166

WebRequestManager 161, 163
WebResource attribute

125, 328, 351–352
WebResource.axd 122
widget

declarative 476–484
declaring as client

control 484
handle 484

window object 45, 78, 108
window._event property 418
window.event property 49
Windows Communication

Foundation 145
Windows Forms 309

Windows Live 6
Windows Local Live

Back button behavior 461
Windows Update

deploying validators 260
wiring client behavior to 310
WSDL 173

X

X-MicrosoftAjax 240
XML 86

comments in JavaScript
447–449

creating animations 358
file as data store 435
namespace 376, 380–382, 395
namespace prefix 381
namespace, declaring 381
Script 38, 92

XML Script
basics 374–386
code block 375
comments 375
Hello, World example

375–378
instantiating ListView 474
parser 382
parsing 382–383
turning static HTML into

dynamic 481
writing client-side logic 470

XML Script code block 382
structure 376

XmlDataSource 214
XMLHttp protocol 198
XMLHttpExecutor 163
XMLHttpRequest

5, 10–14, 37,
162, 166, 195, 198

ActiveX 10
object detection 10
onreadystatechange

property 11
readyState property 12
send function 11
sendRequest function 11

xmlns attribute 381
XML-RPC 176
XSLT 180

Y

Yahoo JSON APIs 167
Yahoo! Design Pattern

Library 522
Yahoo! Geocoding APIs 169
yellow spotlight effect 364–365

Z

Zabir, Omar Al 522

	ASP.NET AJAX in Action
	brief contents
	contents
	forewords
	preface
	about the authors
	ASP.NET AJAX basics
	Introducing ASP.NET AJAX
	1.1 What is Ajax?
	1.1.1 Ajax components
	1.1.2 Asynchronous web programming
	1.1.3 The XMLHttpRequest object
	1.1.4 Ajax development issues

	1.2 ASP.NET AJAX architecture
	1.2.1 Client framework
	1.2.2 Server framework
	1.2.3 Client-centric development model
	1.2.4 Server-centric development model
	1.2.5 ASP.NET AJAX goals

	1.3 ASP.NET AJAX in action
	1.3.1 Simple server-centric solution
	1.3.2 UpdateProgress control
	1.3.3 Simple client-centric example

	1.4 Summary

	First steps with the Microsoft Ajax Library
	2.1 A quick overview of the library
	2.1.1 Library features
	2.1.2 Ajax-enabling an ASP.NET page
	2.1.3 Script versions

	2.2 The Application model
	2.2.1 Client components
	2.2.2 Client-page lifecycle
	2.2.3 “Hello Microsoft Ajax!”

	2.3 Working with the DOM
	2.3.1 The abstraction API
	2.3.2 A dynamic, cross-browser text box
	2.3.3 CSS and positioning
	2.3.4 Client delegates
	2.3.5 $addHandlers and $clearHandlers
	2.3.6 Callbacks

	2.4 Making development with JavaScript easier
	2.4.1 The String object
	2.4.2 Sys.StringBuilder
	2.4.3 The Array object
	2.4.4 Globalization
	2.4.5 Browser detection
	2.4.6 Debugging
	2.4.7 Typed errors

	2.5 Summary

	JavaScript for Ajax developers
	3.1 Working with objects
	3.1.1 Objects
	3.1.2 Arrays
	3.1.3 Functions
	3.1.4 Creating custom objects
	3.1.5 The prototype object
	3.1.6 Extending a JavaScript type
	3.1.7 Literals

	3.2 Working with JSON
	3.2.1 JSON structures
	3.2.2 JSON and the Microsoft Ajax Library

	3.3 Classes in JavaScript
	3.3.1 Client classes
	3.3.2 The registerClass method
	3.3.3 Properties
	3.3.4 Namespaces

	3.4 Understanding inheritance
	3.4.1 Prototype-based inheritance
	3.4.2 Passing arguments to the base class
	3.4.3 Overrides

	3.5 Understanding interfaces and enumerations
	3.5.1 Interfaces
	3.5.2 Enumerations

	3.6 Using type reflection
	3.6.1 Reflection methods
	3.6.2 Object typing
	3.6.3 Building a simple class browser

	3.7 Working with events
	3.7.1 Exposing an event
	3.7.2 Subscribing to and handling events

	3.8 Summary

	Exploring the Ajax server extensions
	4.1 Ajax for ASP.NET developers
	4.1.1 What are the Ajax server extensions?

	4.2 Enhancing an existing ASP.NET site
	4.2.1 A sample ASP.NET site
	4.2.2 Configuring an existing ASP.NET site

	4.3 ScriptManager: the brains of an Ajax page
	4.3.1 Understanding the ScriptManager
	4.3.2 Deploying JavaScript files
	4.3.3 Registering services
	4.3.4 Localization
	4.3.5 Using the ScriptManagerProxy

	4.4 Partial-page updates
	4.4.1 Introducing the UpdatePanel control
	4.4.2 More UpdatePanels
	4.4.3 Insert feedback here
	4.4.4 Working with a timer
	4.4.5 Error handling

	4.5 Summary

	Making asynchronous network calls
	5.1 Working with ASP.NET Web Services
	5.1.1 Configuring a web service
	5.1.2 Invoking web service methods from JavaScript
	5.1.3 Managing complex types
	5.1.4 Using HTTP GET
	5.1.5 Page methods

	5.2 The asynchronous communication layer
	5.2.1 A simple WebRequest
	5.2.2 The executor
	5.2.3 WebRequestManager
	5.2.4 Handling errors

	5.3 Consuming external Web Services
	5.3.1 The script technique
	5.3.2 Cross-domain calls through the server
	5.3.3 Mash-it-up with ASP.NET AJAX
	5.3.4 Bridges

	5.4 Using ASP.NET application services
	5.4.1 Enabling ASP.NET application services
	5.4.2 Authentication service
	5.4.3 Profile
	5.4.4 Roles: an Orcas preview
	5.4.5 Message board application

	5.5 Summary

	Partial-page rendering with UpdatePanels
	6.1 With great power comes great responsibility
	6.1.1 Evolution of the UpdatePanel
	6.1.2 A simple example

	6.2 Getting to know the UpdatePanel
	6.2.1 Content for the UpdatePanel
	6.2.2 Update modes
	6.2.3 Render modes
	6.2.4 ASP.NET page lifecycle

	6.3 Triggers
	6.3.1 Asynchronous triggers
	6.3.2 Postback triggers
	6.3.3 Manual triggers

	6.4 Advanced techniques
	6.4.1 Repeating UpdatePanels
	6.4.2 Nesting UpdatePanels

	6.5 Live GridView filter
	6.5.1 Live GridView filter goals
	6.5.2 How does the GridView filter work?
	6.5.3 Adding Ajax to the GridView filter
	6.5.4 It’s alive!

	6.6 Summary

	Advanced techniques
	Under the hood of the UpdatePanel
	7.1 The PageRequestManager: the unsung hero
	7.1.1 The client-side event model
	7.1.2 The anatomy of an asynchronous postback

	7.2 A client-side event viewer
	7.2.1 Getting started
	7.2.2 Handling client-side events
	7.2.3 Aborting a postback
	7.2.4 Managing postback priority
	7.2.5 Notifying the user
	7.2.6 Locked and loaded
	7.2.7 Client-side error handling

	7.3 UpdatePanel cookbook
	7.3.1 Why is the UpdatePanel slow?
	7.3.2 Inject JavaScript during a partial postback
	7.3.3 Getting the validators to work
	7.3.4 Sys.WebForms.PageRequestManagerParseErrorException

	7.4 Caveats and limitations
	7.4.1 Asynchronous requests are sequential
	7.4.2 Unsupported ASP.NET 2.0 controls

	7.5 Summary

	ASP.NET AJAX client components
	8.1 The client component model
	8.1.1 Visual and nonvisual components
	8.1.2 Controls and behaviors
	8.1.3 Component lifecycle
	8.1.4 Containers

	8.2 Working with client components
	8.2.1 Creating components
	8.2.2 Accessing components
	8.2.3 Events and property change notification

	8.3 Behaviors
	8.3.1 Sys.UI.Behavior
	8.3.2 Creating behaviors
	8.3.3 Accessing behaviors
	8.3.4 Enhancing a text box element

	8.4 Controls
	8.4.1 Sys.UI.Control
	8.4.2 Creating controls
	8.4.3 Accessing controls
	8.4.4 Creating an element wrapper: text box
	8.4.5 Creating a PhotoGallery control

	8.5 Summary

	Building Ajax-enabled controls
	9.1 Script descriptors
	9.1.1 Script descriptor hierarchy
	9.1.2 Describing a behavior
	9.1.3 Describing a control
	9.1.4 Script references

	9.2 Introduction to Ajax-enabled controls
	9.2.1 How Ajax-enabled controls work
	9.2.2 Extenders and script controls

	9.3 Extenders
	9.3.1 The IExtenderControl interface
	9.3.2 Extender registration
	9.3.3 An extender for FormattingBehavior
	9.3.4 Using an extender

	9.4 Script controls
	9.4.1 The IScriptControl interface
	9.4.2 Script control registration
	9.4.3 Design strategies
	9.4.4 Adding Ajax to the ASP.NET Login control
	9.4.5 Using a script control

	9.5 Summary

	Developing with the Ajax Control Toolkit
	10.1 A world of extenders
	10.1.1 The auto-complete extender
	10.1.2 The ScriptPath property
	10.1.3 The BehaviorID property

	10.2 The Ajax Control Toolkit API
	10.2.1 The Toolkit’s base classes
	10.2.2 A metadata-driven API
	10.2.3 Building Toolkit extenders: the TextChanged extender
	10.2.4 Support for Visual Studio Designer

	10.3 Animations
	10.3.1 Toolkit animation framework
	10.3.2 Animation basics
	10.3.3 Using the AnimationExtender
	10.3.4 The UpdatePanelAnimation extender
	10.3.5 JSON and animations: adding transitions to the PhotoGallery control

	10.4 Summary

	ASP.NET AJAX Futures
	XML Script
	11.1 XML Script basics
	11.1.1 Hello XML Script!
	11.1.2 Controls and XML Script
	11.1.3 From XML Script to JavaScript
	11.1.4 Type descriptors

	11.2 Actions
	11.2.1 SetPropertyAction
	11.2.2 PostBackAction
	11.2.3 InvokeMethodAction
	11.2.4 Custom actions

	11.3 Bindings
	11.3.1 A simple binding
	11.3.2 Binding direction
	11.3.3 Target and data path
	11.3.4 Bindings as components
	11.3.5 Transformers
	11.3.6 Playing with transformers
	11.3.7 Custom transformers

	11.4 Summary

	Dragging and dropping
	12.1 The drag-and-drop engine
	12.1.1 How the engine works
	12.1.2 A simple scenario for drag and drop
	12.1.3 Creating a draggable item
	12.1.4 The startDragDrop method
	12.1.5 The IDragSource interface
	12.1.6 Creating a drop target
	12.1.7 The IDropTarget interface
	12.1.8 Putting together the pieces

	12.2 A drag-and-drop shopping cart
	12.2.1 Server-side design
	12.2.2 Client-side design
	12.2.3 The ShoppingCart control
	12.2.4 The BooksCatalog control
	12.2.5 Piecing it together

	12.3 Summary

	Mastering ASP.NET AJAX
	Implementing common Ajax patterns
	13.1 Script versioning
	13.1.1 Getting informative stack traces
	13.1.2 XML comments in JavaScript code
	13.1.3 Validating function parameters
	13.1.4 Parameter validation in production code
	13.1.5 Compressing and crunching script files

	13.2 Helpers, help me help you!
	13.2.1 Automating the declaration of properties
	13.2.2 Automating the creation of events

	13.3 Logical navigation and unique URLs
	13.3.1 Logical navigation
	13.3.2 Unique URLs

	13.4 Declarative data binding
	13.4.1 Setting up the Web Service
	13.4.2 The ListView control

	13.5 Declarative widgets
	13.5.1 The drag-drop list
	13.5.2 Widgets and XML Script

	13.6 Summary

	Appendices
	appendix A :Installing ASP.NET AJAX
	A.1 Downloading and installing ASP.NET AJAX
	A.1.1 Adding the ASP.NET AJAX controls to the Toolbox
	A.1.2 Installing the ASP.NET Futures CTP
	A.1.3 Additional ASP.NET AJAX downloads

	A.2 Installing the Ajax Control Toolkit
	A.2.1 Adding the Toolkit controls to the Visual Studio Toolbox
	A.2.2 Using the Ajax Control Toolkit controls
	A.2.3 Interacting with CodePlex

	A.3 Installing the AdventureWorks database

	appendix B :Tools for debugging Ajax applications
	B.1 Using Firebug for Firefox
	B.1.1 Installing Firebug
	B.1.2 Quick Overview of Firebug

	B.2 Using Web Development Helper
	B.2.1 Installing Web Development Helper
	B.2.2 Launching Web Developer Helper
	B.2.3 Inspecting HTTP traffic
	B.2.4 Script debugging and tracing
	B.2.5 Page and ASP.NET diagnostics

	B.3 Debugging HTTP with Fiddler
	B.4 Debugging JavaScript in Visual Studio 2005
	B.4.1 Enabling script debugging in Internet Explorer
	B.4.2 Setting breakpoints
	B.4.3 Other ways to break into the debugger

	Resources
	index

